Combined stable W and Mo isotopic evidence for increasing redoxpotentials from the Paleo- to Neoarchean Oceans

LUCILE ROUÉ¹, FLORIAN KURZWEIL², MARTIN WILLE³, ANTJE WEGWERTH⁴, OLAF DELLWIG⁵, CARSTEN MÜNKER⁶ AND RONNY SCHOENBERG⁷

¹Eberhard Karls University of Tuebingen
²University of Cologne
³University of Bern
⁴Leibniz Institute for Baltic Sea Research (IOW)
⁵Leibniz Institute for Baltic Sea Research
⁶Universität zu Köln
⁷University of Tuebingen
Presenting Author: lucile.roue@uni-tuebingen.de

The stable tungsten (W) isotope system has lately been the target of a number of studies investigating its potential as a new marine redox proxy. Dissolved W (as WO_4^{2-}) adsorbs onto Feand Mn-oxides with associated equilibrium stable isotopic fractionations e186/184W of 0.51 and 0.59 ‰, respectively [1], resulting in modern seawater that is isotopically heavy ($\delta^{186/184}$ W = +0.55 % [2]) when compared to the detrital input source from the continents (-0.01 to +0.10 %). Unlike Mo enhanced solubility of thiolated W species prevents substantial burial in euxinic sediments [3], but W can be strongly authigenically enriched in shales deposited under hypoxic/anoxic conditions [4]. Additionally, WO_4^{2-} is stable at lower redox potentials than MoO₄²⁻. Thus, variation in the stable W isotopic composition of Archean shales may be a new and complementary tool to investigate changes in the redox state of the ferruginous Archean ocean.

We tested this hypothesis by measuring the stable W isotopic composition of well-characterized 3.47 to 2.50 Ga old marine black shale suites that were deposited under ferruginous conditions (Archean Biosphere Drilling Project, Pilbara Craton, Australia). Determination of the $\delta^{186/184}$ W values of Archean-Paleoproterozoic igneous rocks to establish the detrital isotopic signal of contemporary shaly sediments revealed the same $\delta^{186/184}$ W range as for modern igneous rocks [5]. All shale suites show mixing trends in $\delta^{186/184}$ W values from this detrital background towards an isotopically heavier endmember of up to +0.246 ∞ . Our observation indicates that oxidized WO₄²⁻ must have existed in the Archean ocean as early as 3.47 Ga. In contrast, all these samples with the exception of the youngest 2.5 Ga shales suite have crustal-like $\delta^{98/95}$ Mo values. Combining these findings, we devise a multi-step redox evolution model for the Archean ocean, showing continuously increasing redox potentials from shallow to deep ocean water masses.

Kashiwabara et al. (2017), GCA 204, 52ff [2] Fujiwara Y.
 (2020), Chem. Geol. 555, 119835 [3] Mohajerin et al. (2014),
 GCA 144 157ff [4] Dellwig et al. (2019), Earth Sci. Rev. 193 1ff
 [5] Kurzweil et al. (2019) GCA 251 176ff