Unravelling (Ba,Sr)SO$_4$ oscillatory zoning: A lab-on-a-chip approach integrating in-situ characterisation and reactive transport modelling diagnostics

JENNA POONOOSAMY1, MOHAMED MAHROUS2, ENZO CURTI3, DIRK BOSBACH1, SERGEY V CHURAKOV4, GUIDO DEISSMANN1, THORSTEN GEISLER5 AND NIKOLAOS I PRASIANAKIS6

1Forschungszentrum Jülich GmbH
2Paul Scherrer Institute
3Paul Scherrer Institut
4Paul Scherrer Institut, Switzerland
5Rheinische Friedrich-Wilhelms-Universität Bonn
6Paul Scherrer Institut, PSI

Presenting Author: j.poonoosamy@fz-juelich.de

The co-precipitation of sulphate minerals such as celestine and baryte is widely studied because their formation is ubiquitous in natural and anthropogenic systems. Co-precipitation in porous media results in crystallisation of solid solutions yielding characteristics that are rarely observed in bulk solution or in batch experiments such as oscillatory zoning. In previous experiments formation of compositionally-zoned (Ba,Sr)SO$_4$ crystals was observed post-mortem in macroscopic silica gel counter-diffusion experiments1. The formation of zoned crystals was originally explained by the difference in the solubility products of the end-members combined with diffusion-limited transport of solutes to the mineral-fluid interface1 while a later study favored the idea of kinetically controlled reactions2. With recent advances combining in-operando microfluidic experiments and pore-scale modelling, it is now possible to verify hypotheses on the driving forces of transport-coupled geochemical processes3,4. We developed a “lab on a chip” experiment that enabled the systematic study of the nucleation and growth of oscillatory-zoned (Ba,Sr)SO$_4$ crystals in a microfluidic chamber. Our micromodel consists of two parallel supply channels interconnected by microfluidic reaction chambers. A Na$_2$SO$_4$ solution and a mixed solution of BaCl$_2$ and SrCl$_2$ were injected into the supply channels. The co-precipitation of (Ba,Sr)SO$_4$ was fostered by the counter diffusion of solutes in the microfluidic reaction chamber. The compositions of the solid solutions were determined by in-situ Raman spectroscopy. We used reactive transport modelling with newly implemented theoretical approaches such as the supersaturation function5 and classical nucleation theory6 (CNT) extended to solid solutions to (i) predict the composition of the nucleating phases, and (ii) determine the driving forces for the oscillatory zoning. Our investigation shows that the composition of the nucleating phases can be approximated by using CNT and that the oscillatory zoning results from a combination of limited diffusional transport of solutes and kinetically controlled precipitation reactions.