Where was the potassium, $[K^+]$?

HELEN GREENWOOD HANSMA

University of California at Santa Barbara

Presenting Author: hhansma@physics.ucsb.edu

All living cells have high intracellular potassium concentrations, $[K^+]$. How and when did this high $[K^+]$ appear? There are 2 choices:

- The prebiotic environment was high in [K⁺] = "Early K⁺"
- The prebiotic environment was not high in [K⁺], but protocells created a high intracellular [K⁺], from an environment that was not high in [K⁺] = "Late K⁺".

There are problems with both options.

"Late K $^+$ " has the problem of how such an elemental aspect of life could have arisen after other processes in the origins of life had begun. The high intracellular [K $^+$] is now maintained by an energetically expensive pump, the Na $^+$ /K $^+$ - ATPase.

"Early K⁺" has the problem: where was the [K⁺]? It was not in seawater, which has 40x more Na⁺ than K⁺. Two possibilities have been published: in geothermal fields [1], and between the sheets of mica or biotite in micaceous clay [2, 3]. Neither possibility is ideal.

The geothermal fields are described as 'vapor-dominated,' and there is not convincing data about the excesses of K^{+} over Na^{+} in geothermal fields [1]. Mica has several advantages [2, 3]. Some of these are the following: Mica was present in the Hadean, and mica's anionic mineral sheets are held together by a hexagonal grid of K^{+} , with a periodicity of 0.5 nm, which is also the spacing of anionic phosphate groups in extended single-stranded nucleic acids, DNA and RNA. Most micaceous clay, however, appeared later on Earth.

This question, "where was the K⁺?" is an elephant in the room of research on the origins of life.

- [1] Mulkidjanian, A. Y., et al. (2012), *Proc Natl Acad Sci U S A* 109, E821-830.
- [2] Hansma, H. G. (2010), Journal of Theoretical Biology 266, 175-188.
 - [3] Hansma, H. G. (2020), Preprints 2020090409.