$\Delta^{34}S^{18}O$ systematics of modern sulfate

TOSHIKI KATSUTA 1 , YUICHIRO UENO 1,2 , MAYUKO NAKAGAWA 1 , RIHO AOKI 1 AND NAOHIRO YOSHIDA 1,3

¹Tokyo Institute of Technology

³National Institute of Information and Communications Technology

Presenting Author: katsuta.t.aa@m.titech.ac.jp

In this study, 34S-18O clumping in sulfate are newly used to constrain the sulfur and oxygen cycling. Quantitative conversion from sulfate sample into SO₂F₂ is conducted by the reaction with BaSO₄ and F₂ at 280°C for 3 h in a nickel reaction vessel. The produced SO₂F₂ was purified and measured by high-massresolution mass spectrometer (MAT253 ULTRA). The fluorination method was applied to measure seawater, river water and hot spring water to elucidate the $\Delta^{34}S^{18}O$ systematics of modern sulfate. First, several seawater sulfate samples show constant $\Delta^{34}S^{18}O$ value, which is indistinguishable from that of the international sulfate standard NBS127 (modern marine evaporite). This suggests that $\Delta^{34}S^{18}O$ of gypsum/anhydrite could preserve seawater signature after precipitation. River water sulfate found to exhibit high $\Delta^{34}S^{18}O$ value up to +4.5% relative to seawater sulfate ($\Delta^{34}S^{18}O = 0\%$ by definition). The high $\Delta^{34}S^{18}O$ could be a distinctive signature for sulfate derived from oxidative weathering. On the other hand, sulfate in hot spring water always shows low $\Delta^{34}S^{18}O$ value from -1.0% to -0.5%, which may reflect high temperature hydrothermal origin. These results suggest that the ³⁴S-¹⁸O clumping in seawater sulfate is modified from the river input potentially through microbial sulfate reduction and/or hydrothermal activity. In summary, the $\Delta^{34}S^{18}O$ of marine sulfate deposit could be useful to trace biogeochemical evolution of seawater.

²JAMSTEC