Tungsten-182 and Neodymium-142 evidence for an ancient kimberlite source

NAO NAKANISHI¹, RICHARD W. CARLSON², MARY F. HORAN², ANDREA GIULIANI^{3,4}, JON WOODHEAD⁴, D. GRAHAM PEARSON⁵ AND RICHARD J. WALKER¹

¹University of Maryland ²Carnegie Institution for Science ³ETH Zurich ⁴University of Melbourne ⁵University of Alberta

Presenting Author: nnakanis@umd.edu

Kimberlites are igneous rocks that are derived from the deep mantle. Recent studies of compiled ¹⁴³Nd/¹⁴⁴Nd, ¹⁷⁶Hf/¹⁷⁷Hf, and ⁸⁷Sr/⁸⁶Sr data for a global suite of kimberlites suggest that at least some kimberlites originate from a primitive, isotopicallyhomogenous, deep mantle reservoir that evolved in isolation for at least 2.5 billion years [1, 2]. To decipher whether or not this reservoir preserves remnants of an early-formed mantle domain, we report ¹⁸²W/¹⁸⁴W and ¹⁴²Nd/¹⁴⁴Nd data for kimberlites from ten worldwide localities, ranging in age from 1153 to 52 Ma. Most are characterized by uniform $\mu^{182}W$ and $\mu^{142}Nd$ values (ppm difference in ¹⁸²W/¹⁸⁴W and ¹⁴²Nd/¹⁴⁴Nd between sample and standards) averaging -5.9 ± 1.0 ppm (2SE, n = 13) and +2.7 \pm 1.2 ppm (2SE, n = 6), respectively. The remarkably homogeneous, modestly negative μ^{182} W values, coupled with chondritic to supra-chondritic initial ¹⁴³Nd/¹⁴⁴Nd and ¹⁷⁶Hf/¹⁷⁷Hf ratios over a span of nearly 1000 Myr is powerful evidence that the kimberlites were derived from an early-formed mantle reservoir that was largely isolated from the convective vigor of the accessible upper mantle throughout Earth history. Possible explanations for the modestly negative μ^{182} W value include the ancient transfer of W from the core to the mantle source reservoir, creation of the source reservoir as a result of early silicate fractionation, or an overabundance of late accreted materials in the source reservoir. Each of these possibilities requires a well-mixed, deep mantle source to leave a globallyaccessible, isotopically-uniform reservoir.

By contrast, two younger kimberlites emplaced at 72 and 52 Ma, and characterized by lower initial $^{176}\mathrm{Hf}/^{177}\mathrm{Hf}$ and $^{143}\mathrm{Nd}/^{144}\mathrm{Nd}$ than the older kimberlites, have $\mu^{182}\mathrm{W}$ values consistent with the modern upper mantle. This is consistent with the interpretation that the mantle source of some kimberlites younger than 200 Ma was modified by the incorporation of a deeply subducted component with low $^{143}\mathrm{Nd}/^{144}\mathrm{Nd}$ and $^{176}\mathrm{Hf}/^{177}\mathrm{Hf}$. The $^{182}\mathrm{W}$ isotopic compositions likely reflect contamination of the ancient kimberlite source with the addition of recycled crustal components with $\mu^{182}\mathrm{W} \ge 0$.

[1] Woodhead et al., 2019. Nature, 573, 578-581

[2] Giuliani et al., 2021. PNAS, 118, e2105211118