Multi-proxy reconstruction of marine inorganic carbon chemistry in the Benguela Upwelling System during the last 25 ka

SZABINA KARANCZ1, LENNART J DE NOOIJER2, RICK HENNEKAM2, ZEYNEP ERDEM2, NEGER HAGHIPOUR3, STEFAN SCHOUTEN2,4, BAS VAN DER WAGT2 AND GERT-JAN REICHART2,4

1NIOZ-Royal Netherlands Institute for Sea Research
2NIOZ-Royal Netherlands Institute for Sea Research
3ETH Zurich
4Utrecht University

Presenting Author: szabina.karancz@nioz.nl

Studies on upwelling intensity during the last glacial cycle in the Benguela Upwelling System offshore Namibia show contrasting signals, indicating an incomplete understanding of regional changes. We investigate the evolution of the inorganic carbon chemistry during the last deglaciation in a sediment core from the Walvis Ridge to improve our understanding of upwelling and its association to CO₂ outgassing. Cold waters brought to the surface from depth have high dissolved inorganic carbon (DIC) content, which causes an initial increase in pCO₂ and a decrease in pH and carbonate saturation at the sea surface. Concurrently, the nutrient supply of the upwelled waters and the efficiency of the biological carbon pump provide an important constraint on the reduction of surface pCO₂. This implies that upwelling rate and nutrient utilization together determine CO₂ outgassing. To accurately reconstruct these processes in the Namibia upwelling region, we apply different CO₂-system proxies, such as the boron isotopic composition (δ¹¹B) in the foraminifera shell, the ratio of boron to calcium (B/Ca), and the carbon isotopic composition (δ¹³C) of alkenones. This multi-proxy approach allows the independent reconstruction of parameters of the carbonate system and thus quantification of the complete inorganic carbon system. Along with these proxies for the CO₂ system, the δ¹³C of planktic and benthic foraminiferal shells will be analyzed to evaluate efficiency of the carbon pump and its role in CO₂ outgassing over the last 25 ka.