Origin of H₂ and CH₄ gases in the Eastern São Francisco Basin, Brazil

STEPHANIE FLUDE¹, NIVEA MAGALHAES², OLIVER WARR², VINCENT BORDMANN³, JEAN-MARC FLEURY³, HUMBERTO L. S. REIS⁴, RICARDO TRINDADE⁵, BARBARA SHERWOOD LOLLAR² AND CHRIS J BALLENTINE¹

¹University of Oxford
²University of Toronto
³Total
⁴Geology Department, Universidade Federal de Ouro Preto (UFOP)
⁵Universidade de São Paulo

Presenting Author: stephanie.flude@earth.ox.ac.uk

This multi-year study reveals a series of systems rich in He and H₂ gas, and a complex CH₄ cycle with multiple abiotic and biological sources. Surface gas seeps along rivers are dominated by microbial CH₄ related to near-surface processes in tropical sediments and wetlands. In contrast, samples from gas exploration wellheads have He (up to 1% by vol) and high concentrations of H₂ (up to 25-40% by vol. but consistently between at least 7-11%) for samples measured between 2012 and 2019. Here for the first time an exploration gas well discharging at surface shows evidence of the type of deep cratonic gases typically associated with the deep mines of the Witwatersrand Basin and Canadian Shield¹. Specifically, some wells show a significant component of abiotic alkanes with high associated concentrations of H₂, higher hydrocarbons, and isotopic and geochemical characteristics associated with abiotic organic synthesis². Noble gas analyses confirm a crustal rather than mantle source. Particularly notable is the elevated ²¹Ne/²²Ne endmember identified in at least one gas well, and from other areas of the São Francisco Craton³, that both show the characteristic elevated neon end-member value first identified in ancient fracture fluids from deep mines in Canada and South Africa^{4,5}.

Overall, these results demonstrate the H₂-rich gases in the Precambrian to early Paleozoic cratonic rocks of Brazil share important characteristics with the deep gas and ancient fluids first described in the deep mines of the Canadian Shield and Witwatersrand Basin. The exploration gas wells reflect a complex mixture of discharging gas associated with abiotic organic synthesis and H₂ production (likely related to radiolysis and/or serpentinization), and local mixing with what are likely more surficial sources of microbial CH₄.

¹Sherwood Lollar et al. (2021) GCA 294:295-314. ²Warr et al. (2021) GCA 294:315-334. ³Magalhães et al, Goldschmidt Abstract (2021). ⁴Lippmann-Pipke et al. (2011) Chem Geo 283:287-296. ⁵Holland et al. (2013) Nature 497:357-360.