Autotrophic nitrate reduction coupled to oxidation of Fe(II) phases by a Gallionellaceae sp.-dominated microbial community enriched from a pyrite-rich aquifer

NATALIA JAKUS1, NIA BLACKWELL1, ADRIAN MELLAGE1, DANIEL STRAUB1, CARMEN HOESCHEN2, MARKUS MAISCH1, JAMES M. BYRNE3, CARSTEN W MUELLER4, PETER GRATHWOHL1, SARA KLEINDIENST1 AND ANDREAS KAPPLER1

1University of Tuebingen
2Technical University Muenchen
3University of Bristol
4University of Copenhagen
Presenting Author: natalia.jakus@geo.uni-tuebingen.de

Autotrophic denitrification coupled to pyrite oxidation is thought to drive natural attenuation of nitrate in aquifers. However, laboratory-based cultivation of autotrophic nitrate-reducing iron-oxidizing (NRFeOx) microorganisms is challenging, and so far little is known about the identity of subsurface-inhabiting NRFeOx bacteria, their physiology, metabolic makeup, and the mechanisms of oxidation of solid Fe(II) sources. Here, we used culture-dependent studies supported by NanoSIMS analysis, SEM imaging and reaction-modeling to evaluate the rates, the extent and mechanisms of Fe\(^{2+}\)\(_{\text{aq}}\), siderite (FeCO\(_3\)), and pyrite (FeS\(_2\)) oxidation coupled to nitrate reduction by an autotrophic NRFeOx culture enriched from a fractured limestone aquifer containing Fe(II) minerals. Additionally, we applied metagenomics to elucidate putative electron transfer pathways in nitrate reduction and Fe(II) oxidation. During incubation with Fe\(^{2+}\)\(_{\text{aq}}\) and siderite, the NO\(_3^-\)/Fe(II) oxidized ratios were close to a stoichiometric ratio of 0.2, suggesting that complete Fe(II)-dependent denitrification occurred. While growing on pyrite, only a fraction of nitrate (25.8%) was reduced due to direct oxidation of structural Fe(II), and the rest was coupled to the oxidation of S\(_0\) present as a residue from pyrite synthesis. The 16S rRNA gene sequencing revealed that the culture was dominated (ca. 62% relative abundance) by a so far uncultured organism belonging to the family Gallionellaceae (known Fe(II)-oxidizers). The unclassified Gallionellaceae sp., apart from having a cytochrome Cyc2 gene, putatively involved in extracellular electron transfer from Fe(II), also possesses narGHJI, nirKS, and norBC, a complete set of genes necessary to reduce NO\(_3^-\) to N\(_2\)O. It lacks, however, the nosZ gene and genes involved in S-cycling (sox), suggesting that NRFe oxidation in pyrite-containing aquifers requires multiple inter-species metabolic hand-offs. These findings highlight the importance of chemolithoautotrophic Gallionellaceae in linking biogeochemical cycles of N and Fe and has implications for predicting the fate of nitrate in freshwater ecosystems poor in organic carbon.