Environmental impact of amino acids on the stability of hydrotalcite after bearing SeO₄²⁻ integrated with DFT simulation

MENGMENG WANG¹, HIROFUMI AKAMATSU², ISMAILA DABO³ AND KEIKO SASAKI¹

 ¹Kyushu University
²Department of Applied Chemistry
³Department of Materials Science and Engineering, The Pennsylvania State University
Presenting Author: wang@mine.kyushu-u.ac.jp

⁷⁹Se isotope as one of the radionuclides, which is produced by nuclear electricity in chemical forms of selenate (SeO_4^{2-}) and/or selenite (SeO_3^{2-}) with a half-life time of 3.27×10^5 years. ⁷⁹Se oxyanions can be immobilized by layered double hydroxides (LDHs) for disposal underground, which are commonly anionic exchangers in cementitious materials. The natural accidents such as earthquakes or related phenomena can disturb the resulting vault and accelerate radionuclides wastes to leach into the soil and water environment. Organic aicds might have some effects on their mobility. Amino acid is one of model of organic acids in pedosphere which are originally from degraded substances of dead soil animals and microorganisms.

In the present work, hydrotalcite (Mg₂Al-LDH) bearing SeO₄²⁻ were prepared by ion-exchanging method. Effects of several amino acids (glycine, aspartic acid, cysteine, phenelalanine, and tryptophan) on the stability of SeO422 in Mg2Al-LDH was explored under alkaline conditions. Glycine, aspartic acid, and cysteine have promoted the release of SeO₄²⁻ from Mg₂Al-LDH. DFT simulation confirmed glycine can be intercalated into Mg₂Al-LDH interlayer in different orientations. And Cys suppressed Mg released by forming Mg-Cys under alkaline complexes.Therefore, the geochemical environment, amino acids which have smaller molecular sizes and higher charge densities might cause the risk to release ⁷⁹Se from cement disposal sites and the second radionuclides contamination.