Origin of Fe-Ni-Cu sulfides in the 1.77Ga mafic dyke from Satkosia area, Singhbhum Craton (eastern India)

ARNAB DEY AND SISIR K. MONDAL

Jadavpur University

Presenting Author: arnabdey611@gmail.com

Numerous mafic dykes of ~2.8-1.7Ga age intruded the Archean granitic crust (~3.5-3.3 Ga) in the Singhbhum Craton. The dykes are oriented in four major directions e.g., NE-SW to NNE-SSW, NW-SE to WNW-ESE, N-S, and E-W. This study is based on the ~1.77Ga WNW-ESE trending Pipilia dykes that have been sampled from the Satkosia area in Orissa-state. The dyke samples from Satkosia have augite (~34-51 modal%; Mg# \approx 65.7-82.6; En₃₇₋₄₈Fs₁₁₋₁₇Wo₃₆₋₄₁), clinoenstatite (~2 modal%; Mg# $\approx 68.5-78$; En₆₃₋₇₀Fs₂₀₋₂₉Wo₄₋₅), and plagioclase (~35-40 modal%; An₁₁₋₃₉Ab₄₄₋₈₂Or₁₋₇), and show cumulate texture at the central part and intergranular texture at the marginal part. The doleritic rocks are also characterized by the occurrence of granophyric texture (~1-9 modal%). Accessory minerals are Fe-Ti-oxides (~5 modal%), and are titanomagnetite (FeO ≈34.38-39.50 wt%, Fe₂O₃ ≈48.26-56.21 wt%, TiO₂ ≈5.05-9.60 wt%), ilmenite (FeO ≈40.75-43.79 wt%, Fe₂O₃ ≈3.54-10.03 wt%, TiO₂ ≈47.82-50.87 wt%) and sulfides (<1 modal%). Sulfide minerals are disseminated throughout the dyke at Satkosia, and occur along the interstices of silicate and oxide minerals. Sulfide mineral assemblage contains pyrite \pm chalcopyrite \pm vaesite. Pyrite has Ni ≈ 0.02 -1.95 wt% and Co ≈ 0.01 -5.70 wt%, and shows weak negative correlation with Fe. Coexisting chalcopyrite has Ni ≈ 0.07 -0.30 wt% and Co ≈ 0.02 -0.08 wt%. Vaesite contains Ni \approx 26.40-47.88 wt%, Co \approx 2.42-10.44 wt%, Fe \approx 5.54-26.55 wt%, and S \approx 41.58-46.67 wt%, and plots below the actual field of vaesite in the Fe-Ni-S ternary diagram. Twopyroxene thermometry yield a temperature range of 1065-978°C and coexisting titanomagnetite-ilmenite reveals equilibration temperature of 731°C-573°C with corresponding fO₂ at NNO+0.3 to FMQ-1.03. The primary magmatic sulfide liquid segregated from the tholeiitic basaltic magma due to decrease in FeO activity after the crystallization of magnetite. The immiscible sulfide liquid was relatively S-rich and evolved along the S-rich portion of the Fe-Ni-S system and initially crystallized monosulfide solid solution from which pyrite and vaesite were exsolved during subsolidus cooling below 700 °C. Globally ~1.77-1.79Ga dykes and related LIPs are known to host Ni-Cu sulfide deposits, and the first reported occurrence of sulfides in the ~1.77Ga Singhbhum dyke increases the exploration potentiality of the mafic rocks of this age in the craton.