Mercury concentrations in Pacific Ocean tunas are driven by both anthropogenic and natural factors

ANAÏS MÉDIEU¹, DAVID POINT², TAKAAKI ITAI³, HÉLÈNE ANGOT⁴, PEARSE BUCHANAN⁵, VALÉRIE ALLAIN⁶, SHANE GRIFFITHS⁷, LEANNE FULLER⁷, DAVID GILLIKIN⁸, JEROEN E SONKE⁹, LARS-ERIC HEIMBUERGER-BOAVIDA¹⁰, CHRISTOPHE E. MENKES¹¹, DANIEL MADIGAN¹², ALESSANDRO TAGLIABUE⁵, LAURENT BOPP¹³, ANOUK VERHEYDEN¹⁴ AND ANNE LORRAIN¹¹

¹Université Bretagne Occidentale
²Géosciences Environnement Toulouse, CNRS/IRD/Université Paul Sabatier Toulouse III
³The University of Tokyo
⁴University of Colorado Boulder
⁵University of Liverpool
⁶Pacific Community
⁷Inter-American Tropical Tuna Commission
⁸Union College (US)
⁹CNRS/Université de Toulouse
¹⁰Institut Méditerranéen d'Océanologie - MIO, CNRS
¹¹IRD
¹²University of Windsor
¹³CNRS
¹⁴Union College

Presenting Author: anais.medieu@ird.fr

Tunas are one of the most consumed seafood products but are also the main conduit to human methylmercury exposure, a potent neurotoxin. Anthropogenic mercury emissions outweigh their natural counterpart by a factor 5, and yet, how anthropogenic mercury is converted into oceanic methylmercury and how this translates into tuna methylmercury concentrations is unclear. A model of mercury concentrations in skipjack tunas for the Pacific Ocean was built, combining ecological, environmental and mercury atmospheric data. We show that the footprint of mercury in skipjack is regionally driven, with hemispherical and zonal gradients. While maximum levels occur near Asia, associated with elevated anthropogenic emissions, high concentrations are also found in the eastern Pacific where high productivity and oxygen depleted waters stimulate methylation. The historical growth and projected expansion of oceanic oxygen minimum zones associated with global warming may therefore delay the efficiency of mitigation policies implemented under the Minamata convention.