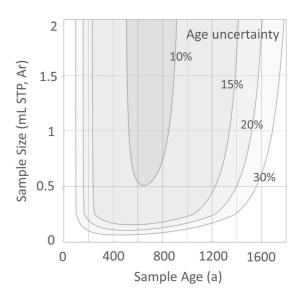
Upper age limit of cosmogenic ³⁹Ar dating extended to 1,800 years

WEI JIANG¹, AMIN L TONG¹, JI-QIANG GU¹, YAN-QING CHU¹, XI-ZE DONG¹, SHUI-MING HU¹, ZHENG-TIAN LU¹, FLORIAN RITTERBUSCH¹, LIANG-TING SUN² AND GUO-MIN YANG¹

¹University of Science and Technology of China ²Institute of Modern Physics


Presenting Author: wjiang1@ustc.edu.cn

Cosmogenic ³⁹Ar dating is an emerging technique in tracing groundwater flow, dating mountain glacier ice, and mapping ocean circulation. We have realized a system for atom trap trace analysis of the radioactive isotope 39 Ar (half-life = 269 years) in environmental samples. The system is capable of analysing small (1 - 5 kg) environmental water or ice samples, and achieves a count rate of 10 atoms/h for ³⁹Ar at the modern isotopic abundance level of 8×10^{-16} . By switching frequently between counting 39Ar atoms and measuring the stable and abundant isotope ³⁸Ar, drift effects in the trapping efficiency are largely suppressed, leading to a more precise measurement of the isotope ratio ³⁹Ar/³⁸Ar. These advances allow us to determine the ³⁹Ar age in the range of 250 - 1,300 years with precisions better than 15%. Moreover, cleaning techniques are developed to alleviate cross-sample contamination. This has made it possible to achieve a detection limit at 1% of the modern ³⁹Ar/Ar level. The upper age reach of ³⁹Ar dating has thus been extended to 1,800 years.

Furthermore, technical developments that may increase the ³⁹Ar count rate by orders of magnitude will also be discussed. This includes a pre-enrichment system that can increase the isotopic abundance of ³⁹Ar in the Ar sample by a factor of 100 before the atom-trap analysis. These developments, if successful, will enable large scale applications of ³⁹Ar dating.

As of 2021, the laboratory for radio-noble gas dating at the University of Science of Technology of China has full capabilities to perform analysis of ⁸¹Kr, ⁸⁵Kr and ³⁹Ar. Together with ¹⁴C they can cover a wide age range from a few years to 1.3 million years.

Website: http://atta.ustc.edu.cn

