Controls on barium and radium-226 distributions along GEOTRACES GP15

EMILIE LE ROY¹, MATTHEW A CHARETTE¹, PAUL B HENDERSON¹, ALAN SHILLER², WILLARD MOORE³, RIAN LAWRENCE⁴, AVANTI SHRIKUMAR⁴, KAREN LYNN CASCIOTTI⁴, PIETER VAN BEEK⁵, MARC SOUHAUT⁵, MAUREEN AURO¹ AND TRISTAN J HORNER¹

¹Woods Hole Oceanographic Institution
²University of Southern Mississippi
³University of South Carolina
⁴Stanford University
⁵Laboratoire d'Etudes en Géophysique et Océanographie Spatiales
Presenting Author: eleroy@whoi.edu

Radium-226 (²²⁶Ra; $t_{1/2}$ = 1,602 yr) and Ba are strongly correlated to one another in the ocean. However, the extent to which this correlation reflects an active biogeochemical coupling versus a passive sharing of the same circulation is unclear. The GEOTRACES GP15 section provides an ideal dataset with which to test these hypotheses. Radium-226 activities and Ba concentrations were determined in the Pacific along 152°W from 55°N to 20°S on samples collected between September-November 2018. We isolated the circulation component of the distribution by performing an optimum multiparameter analysis of the encountered water masses and modeled the distributions of ²²⁶Ra and Ba based solely on physical transport of these water masses. The difference between the modeled and observed ²²⁶Ra and Ba distributions reflects three significant non-conservative processes that influence ²²⁶Ra and Ba distributions in the Pacific. First, in the north Pacific, intermediate waters (0-1,500 m) exhibit substantial deficits in 226Ra and Ba that are likely caused by their incorporation into barite. Second, significant positive ²²⁶Ra and Ba anomalies are found in deep waters (below 3,000 m) along the entire GP15 section, reflecting accumulation of ²²⁶Ra and Ba from sediment diffusion and particle dissolution, respectively. Third, there are persistent positive ²²⁶Ra anomalies between 5°N and 20°S around 2,500 m. Importantly, there are no corresponding Ba anomalies, suggesting a solute source unique to ²²⁶Ra, such as from hydrothermalism. We augmented this statistical analysis with measurement of particulate ²²⁶Ra, Ba, and Ba isotopes, which bring additional insight into the sources of particulate material to the deep ocean.