Komatiite melts detect deep hydrous reservoirs in the mantle transition zone implying active subduction since Eoarchean time

ALEXANDER V. SOBOLEV^{1,2}, EVGENY V. ASAFOV³, ANDREY A. GURENKO⁴, CHARBEL KAZZY¹, ANDREW C. KERR⁵, ALEKSANDR V. CHUGUNOV¹, VALENTINA G. BATANOVA^{1,3}, MAXIM V. PORTNYAGIN⁶, STEPHAN V. SOBOLEV^{7,8} AND JOHN W. VALLEY⁹

¹Université Grenoble Alpes

²Institute of Earth Sciences (ISTerre), University Grenoble Alpes ³Vernadsky Institute of Geochemistry and Analytical Chemistry RAS

⁴Centre de Recherches Pétrographiques et Géochimiques (CRPG)

⁵Cardiff University

⁶GEOMAR Helmholtz Centre for Ocean Research Kiel

⁷GFZ German Research Centre for Geosciences

⁸University of Potsdam

⁹University of Wisconsin–Madison

Presenting Author: alexander.sobolev@univ-grenoble-alpes.fr

The ERC Synergy project: Monitoring Earth Evolution Through Time (MEET) started in November 2020. Here we report results of study of melt inclusions and host high-Mg olivine phenocrysts of komatiites and related picrites from Phanerozoic localities: Gorgona, Colombia (0.09 Ga), Song Da, Vietnam (0.26 Ga), and Archean localities: Belingwe belt, Zimbabwe (2.67 Ga), Abitibi belt, Canada (2.70 Ga) and Barberton belt, S. Africa (3.3 Ga). Melt inclusions were remelted at 1250-1400 °C and 1 bar pressure, quenched and studied by EPMA for major elements, K and Cl, by SIMS for H₂O contents and D/H ratios, and by LA-ICP-MS for trace elements. Host olivines were studied for major and minor elements by EPMA and trace elements by LA-ICP-MS.

Results:

1.Crystallization temperatures using Al-in olivine-spinel and Sc/Y olivine-melt geothermometers were up to 1490°C for Phanerozoic komatiites and up to 1550°C for Archean ones. These correspond to potential temperatures of ca. 1620°C and over 1700°C correspondingly.

- 2. Studied inclusions in the most Mg-rich olivines of each suite contain a significant excess of H_2O over elements of similar partition behavior between solid and melt: K and Ce. This leads to exceptionally high ratios of H_2O/K_2O (up to 40 over normal 1 for OIB and MORB) and H_2O/Ce (up to 7000 over normal 200), while H_2O content is in the range of 0.2- 0.9 wt.% in parental melts.
- 3. D/H ratios of the melt inclusions less affected by H diffusion loss, indicate mantle source severely depleted in deuterium (δD is typically in the range between -100 and -230 ‰).

Interpretation:

- Potential temperature of all studied komatiites exceeds 1600°C and thus implies their mantle plume origin. Moreover, these potential temperatures are high enough to ensure partial melting of these plumes when crossing the mantle transition zone.
- 2. We propose that the mantle plumes that generate komatiites entrain H_2O by interstitial melt during their passage through the hydrated mantle transition zone.
- 3. We further suggest that the source of H_2O depleted in deuterium in the mantle transition zone were subducted partially dehydrated slabs of oceanic lithosphere, which implies an active subduction process since the Eoarchean.