Komatiite melts detect deep hydrous reservoirs in the mantle transition zone implying active subduction since Eoarchean time

ALEXANDER V. SOBOLEV1,2, EVGENY V. ASAFOV3, ANDREY A. GURENKO4, CHARBEL KAZZY1, ANDREW C. KERR5, ALEKSANDR V. CHUGUNOV1, VALENTINA G. BATANOVA1,3, MAXIM V. PORTNYAGIN6, STEPHAN V. SOBOLEV7,8 AND JOHN W. VALLEY9

1Université Grenoble Alpes
2Institute of Earth Sciences (ISTerre), University Grenoble Alpes
3Vernadsky Institute of Geochemistry and Analytical Chemistry RAS
4Centre de Recherches Pétrographiques et Géochimiques (CRPG)
5Cardiff University
6GEOMAR Helmholtz Centre for Ocean Research Kiel
7GFZ German Research Centre for Geosciences
8University of Potsdam
9University of Wisconsin–Madison

Presenting Author: alexander.sobolev@univ-grenoble-alpes.fr

The ERC Synergy project: Monitoring Earth Evolution Through Time (MEET) started in November 2020. Here we report results of study of melt inclusions and host high-Mg olivine phenocrysts of komatiites and related picrites from Phanerozoic localities: Gorgona, Colombia (0.09 Ga), Song Da, Vietnam (0.26 Ga), and Archean localities: Belingwe belt, Zimbabwe (2.67 Ga), Abitibi belt, Canada (2.70 Ga) and Barberton belt, S. Africa (3.3 Ga). Melt inclusions were remelted at 1250-1400 °C and 1 bar pressure, quenched and studied by EPMA for major elements, K and Cl, by SIMS for H2O contents and D/H ratios, and by LA-ICP-MS for trace elements. Host olivines were studied for major and minor elements by EPMA and trace elements by LA-ICP-MS.

Results:
1. Crystallization temperatures using Al-in olivine-spinel and Sc/Y olivine-melt geothermometers were up to 1490°C for Phanerozoic komatiites and up to 1550°C for Archean ones. These correspond to potential temperatures of ca. 1620°C and over 1700°C correspondingly.

2. Studied inclusions in the most Mg-rich olivines of each suite contain a significant excess of H2O over elements of similar partition behavior between solid and melt: K and Ce. This leads to exceptionally high ratios of H2O/K2O (up to 40 over normal 1 for OIB and MORB) and H2O/Ce (up to 7000 over normal 200), while H2O content is in the range of 0.2-0.9 wt.% in parental melts.

3. D/H ratios of the melt inclusions less affected by H diffusion loss, indicate mantle source severely depleted in deuterium in the mantle transition zone, which implies an active subduction process since the Eoarchean.

Interpretation:
1. Potential temperature of all studied komatiites exceeds 1600°C and thus implies their mantle plume origin. Moreover, these potential temperatures are high enough to ensure partial melting of these plumes when crossing the mantle transition zone.
2. We propose that the mantle plumes that generate komatiites entrain H2O by interstitial melt during their passage through the hydrated mantle transition zone.
3. We further suggest that the source of H2O depleted in deuterium in the mantle transition zone were subducted partially dehydrated slabs of oceanic lithosphere, which implies an active subduction process since the Eoarchean.