On the Mechanism of Sodic Removal from Bauxite Residue and Bauxite Desilication Products (BDP) Using Microbiogenic Acids

SICHENG WANG, TUAN NGUYEN, HONG PENG, FANG YOU AND LONGBIN HUANG

The University of Queensland

Presenting Author: sicheng.wang@uq.edu.au

Bauxite desilication products (BDP) are fundamental causes of persistent alkalinity and salinity in bauxite residue (BR). Previous studies have shown that significant amounts of microbiogenic acids (e.g., CH₃COOH, H₂C₂O₄) and Na⁺ were detected in the pore water of organic matter-amended and bacteria-colonised bauxite residue, implying the capability of microbiogenic acids to alleviate the alkalinity and salinity of bauxite residue [1]. The present study aims to establish a fundamental understanding of bauxite residue/BDP weathering mechanism by using microbiogenic acids as case models of microbial-derived low-molecular-weight soluble organic compounds. The sodium concentration in microbiogenic acidstreated bauxite residues has significantly decreased in the mineral phase, which is dominated by Na⁺-H⁺ exchange process with partial breakdown of aluminosilicate β -cages. According to the results from Attenuated total reflection and fourier-transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and X-Ray photoelectron spectra, it was indicated that acetate and oxalate were adsorbed/complexed on the surface of BDP, causing slight deformation of BDP's cages and thus enhancing surficially encaged Na⁺ easily detached from alkaline mineral surface [1-3]. The atomistic molecular dynamic simulation confirmed the adsorption of the microbiogenic acid molecules on the cleaved (110) surface of hydroxylsodalite, through either interactions with Al or Si atoms of the β -cages or hydrogen bonding with surface oxygen atoms. In addition to critical Na⁺- H⁺ exchange process, the adsorption of microbiogenic acids on BDP also contribute to triggering surfacial Na⁺ diffusion into aqueous solution from hydroxylsodalite b-cages. These collectively suggested that the continuous Na⁺- H⁺_(organic) exchange process mediated by the organic acid complexation would be critical to the depletion of BDP and dealkalization of the treated bauxite residue in the long-term, preventing future release of Na into the soluble phase and the reversal of the alkalinity. These findings may lead to unlocking the barriers to sustainable bauxite residue rehabilitation.

[1] You, F., et al. (2019) Sci Total Environ 663, 216-226.

- [2] Wang, S., et al. (2020) JOM 72, 309-318.
- [3] Huang, L. et al. (2018) Alumina Conference, Australia.