New age of Zr from ijolite-porphyry dikes associated with the University pluton (Kuznetsk Alatau ridge, SW Siberia)

AGABABA ASLANOVICH MUSTAFAEV AND IGOR FEDOROVICH GERTNER

National Research Tomsk State University Presenting Author: alishka010593@gmail.com

In the western part of the Central Asian Orogenic Belt, there is a large Altai-Sayan orogenic system [1] framing the SW part of the Siberian craton. This system includes the Kuznetsky Alatau (KA) terrane in the north [2]. The KA is a Caledonian terrane predominantly with accretionary complexes, which belong to the active margin of the Paleoasian Ocean [3], where Paleozoic alkaline-basic magmatism developed extensively.

The petrographic varieties of the University pluton (UNp) are represented mainly by subalkaline gabbroids. Their absolute age is estimated at 494 \pm 36 Ma (subalkaline melanogabbro) and 491 \pm 36 Ma (subalkaline leucogabbro) by the Sm-Nd isotope method, which corresponds to the C_3 [4]. Everywhere in the territory of the UNp and the sedimentary enclosing (Ust-Kundatskaya and Berikulskaya formations), the dikes of NW and NE stretch break through, which are represented by a variegated composition: ultrabasic, basic foidolites and nepheline syenites. Previously, the results of the absolute age of alkaline dikes were obtained by the Sm-Nd isotope method: 394 \pm 16 Ma (plagioclase ijolite) and 389 \pm 37 Ma (analcime syenite), which correspond to the boundary of the D_{1,2} [5].

For the first time, we selected zircons from the ijoliteporphyry dike, which were used for U-Pb isotopic studies. The probable time of intrusion of ijolite-porphyry dikes is estimated at 395.7 \pm 9.4 Ma, which corresponds to the Early Devonian. Thus, in the aggregate of isotopic data by Sm-Nd and U-Pb methods, the formation of alkaline dikes breaking through the UNp and the sediments enclosing the pluton took place in the D₁.

The reported study was funded by RFBR (project $\mathbb{N}_{\mathbb{P}}$ 19-35-90030), mega-grant in accordance with the Decree of the Government of the Russian Federation (Agreement $\mathbb{N}_{\mathbb{P}}$ 14.Y26.31.0012) and the State Task of the Ministry of Science and Higher Education of the Russian Federation (project $\mathbb{N}_{\mathbb{P}}$ 0721-2020-0041).

Vorontsov et al., (2020), Gondw. Res. 89, 193-219. [2]
Wilhem C. et al., (2012), Earth Sci. Rev. 113, 303-341. [3]
Kuzmin & Yarmolyuk (2014), Rus. Geol. Geophys. 55, 120-143.
[4] Mustafayev et al., (2017), Earth Envir. Sci. 110, 0120165. [5]
Mustafaev et al., (2020), Minerals. 10, 1128.