Theoretical understanding on boron isotope fractionation during serpentinization

YIN-CHUAN LI¹, HAI-ZHEN WEI², MARTIN R. PALMER³ AND SHAO-YONG JIANG⁴

¹Nanjing University

²School of Earth Sciences and Engineering, Nanjing University
³University of Southampton
⁴China University of Geosciences

Presenting Author: lgdlyc@126.com

Serpentinites entering subduction zones show selective enrichment in trace elements and are the most important carriers of B in this setting [1]. The evolving B isotopic composition (δ^{11} B) of serpentinite is used in studying mantle-crust material exchange in subduction zones, but we lack full understanding of the processes controlling B isotope fractionation during serpentinization that would allow this tracer to be better utilized. Boron isotope fractionation between lizardite/ forsterite/diopside and aqueous fluids is investigated here using quantum mechanics (density functional theory, DFT) and *ab initio* molecular dynamics simulation (AIMD).

At 0-500 MPa and 0-1000 K, the best fit curves for the reduced isotopic partition function ratio (β -factor) of aqueous B(OH)₃ and B(OH)₄⁻ are 1000ln $\beta_{B(OH)3} = -20.1 + 37.07(1000/T) + 8.2(1000/T)^2$ and 1000ln $\beta_{B(OH)4} = -13.94 + 24.43(1000/T) + 9.12(1000/T)^2$ (T in Kelvin). The ¹¹B enrichment sequence follows the order forsterite > clinopyroxene (diopside) > white mica > phlogopite > lizardite. Lizardite differs from phlogopite and white mica, in that the B/Si orderings do not influence its δ^{11} B. Using the B speciation of serpentinite fluids [2], this theoretical approach gives an equilibrium B isotope fractionation of Δ^{11} B_{lizardite-fluid} = 15.89 - 22.88(1000/T) - 0.19(1000/T)² between lizardite and serpentinized fluid in the temperature range from 25 to 400 °C.

[1] Kodolányi, J. et al. (2012). J. Petrol. 53, 235-270.

[2] Hansen, C.T. et al. (2017). Geochim Cosmochim Acta 217, 51-79.