Fluctuation of marine osmium isotope ratio during the Quaternary climate cycles

YUSUKE KUWAHARA¹, KAZUTAKA YASUKAWA^{1,2,3}, KOICHIRO FUJINAGA^{2,3}, TATSUO NOZAKI^{2,3,4,5}, JUNICHIRO OHTA^{2,3,6}, HONAMI SATO^{2,4,7}, JUN-ICHI KIMURA⁸, KENTARO NAKAMURA¹, YUSUKE YOKOYAMA^{8,9,10,11} AND YASUHIRO KATO^{1,2,3,4}

¹Department of Systems Innovation, School of Engineering, The University of Tokyo

²Ocean Resources Research Center for Next Generation, Chiba Institute of Technology

³Frontier Research Center for Energy and Resources, School of Engineering, The University of Tokyo

⁴Submarine Resources Research Center, Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology

⁵Department of Planetology, Graduate School of Science, Kobe University

⁶Volcanos and Earth's Interior Research Center, Research Institute for Marine Geodynamics, Japan Agency for Marine-Earth Science and Technology

⁷Department of Geosciences, University of Padova ⁸JAMSTEC

⁹Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo

¹⁰Graduate Program on Environmental Sciences, Graduate School of Arts and Sciences, The University of Tokyo

¹¹The University of Tokyo

Presenting Author: yusuke-kuwahara326@g.ecc.u-tokyo.ac.jp

The solid earth plays a major role in controlling Earth's surface climate. Volcanic degassing of carbon dioxide (CO₂) and silicate chemical weathering are known to regulate the evolution of climate on a geologic timescale (>10⁶ yr) [1], but the relationship between the solid earth and the shorter (<10⁵ yr) fluctuations of the Quaternary glacial–interglacial cycles is still under debate. We employed the paelo-seawater osmium isotope composition (¹⁸⁷Os/¹⁸⁸Os), as a proxy for the solid earth's response to the Quaternary climate change. The marine ¹⁸⁷Os/¹⁸⁸Os reflects the relative intensity of two dominant influxes to the ocean: radiogenic continental-derived materials (¹⁸⁷Os/¹⁸⁸Os = ~1.4) and unradiogenic mantle-like materials (¹⁸⁷Os/¹⁸⁸Os = ~0.126) such as hydrothermal fluids and cosmic dust [2].

Our analytical results of deep-sea sediments at ODP Site 834 in the South Pacific Ocean showed that the seawater ¹⁸⁷Os/¹⁸⁸Os has varied during the past 300,000 years in association with glacial–interglacial cycles [3]. We implemented marine Os isotope mass-balance simulations and revealed that the observed ¹⁸⁷Os/¹⁸⁸Os fluctuation cannot be explained solely by changes in global chemical weathering rate corresponding to the Quaternary glacial–interglacial climate cycles [3]. Instead, the fluctuation can be reproduced by taking account of short-term inputs of (i)

radiogenic Os derived from intense weathering of glacial till during deglacial periods [4] and (ii) unradiogenic Os derived from enhanced seafloor hydrothermalism triggered by sea-level falls associated with increases of ice sheet volume [5]. Our results constitute the first evidence that ice sheet recession and expansion during the Quaternary systematically and repetitively caused short-term ($<10^5$ yr) solid earth responses via chemical weathering of glacial till and seafloor magmatism. This finding implies that climatic changes on $<10^5$ yr timescales can provoke rapid feedbacks from the solid earth, a causal relationship that is the reverse of the longer-term ($>10^6$ yr) causality that has been conventionally considered.

Berner & Kothavala (2001) Am. J. Sci. 301, 182-204. [2]
Peucker-Ehrenbrink & Ravizza (2000) Terra Nova 12, 205-219.
Kuwahara et al. (2021) Sci. Rep. accepted, [4] Peucker-Ehrenbrink & Blum (1998) Geochim. Cosmochim. Acta 62, 3193-3203. [5] Lund & Asimow (2011) Geochem., Geophys., Geosys. 12, Q12009.