Determination of sulfur speciation in apatites from Martian meteorites (shergottites) using µ-XANES

PROTEEK CHOWDHURY¹, MARYJO BROUNCE², JEREMY BOYCE³ AND FRANCIS MCCUBBIN⁴

¹University of California, Riverside
²University of California Riverside
³NASA
⁴NASA Johnson Space Center
Presenting Author: proteekc@ucr.edu

Apatite is a ubiquitous accessory mineral in planetary materials, including in Martian meteorites. Sulfur in terrestrial apatites is mostly S⁶⁺ as they are formed in relatively oxidized environments [1]. Recently, S²⁻-only bearing apatites have been documented in lunar and terrestrial [1] environments and in experiments [2], the later also reporting simultaneous incorporation of both S⁶⁺ and S²⁻ at intermediate oxygen fugacities (fO_2). Thus, it has been suggested that proportions of S⁶⁺/S²⁻ in apatite, together with major element compositions, *T* and *P*, may record the fO_2 of formation of these apatites [1,2]. Martian rocks, by the virtue of recording intermediate fO_2 between the Moon and Earth [4], may contain S²⁻-only or both S⁶⁺ and S²⁻ bearing apatites.

Martian shergottites Shergotty and QUE 94201 record fO_2 of \sim IW+1.9-IW+2.8 and \sim IW-1.5-IW-1.0, respectively [3], where we expect silicate liquids and the apatites crystallizing from those liquids to contain S primarily as S²⁻. To test this hypothesis, we present S-XANES measurements of apatite grains and other associated phases.

Shergotty apatites only show peaks of structural S²⁻ in apatites (2470 and 2477 eV) with $S^{6+}/\Sigma S=0$. The presence of S^{2-} -only apatites in Shergotty is consistent with other mineralogical records of fO_2 in this meteorite and suggest that the oxidation state of sulfur records and preserves the fO_2 during igneous crystallization of apatite. QUE 94201 apatites, however, show peaks of both S²⁻ and S⁶⁺ (2481.7 eV), varying in S⁶⁺/ Σ S from 0-100%. This meteorite is known to have gone through substantial sulfate-rich alteration and oxidation both on the fusion crust and in the interior upon arrival to Earth's surface [4]. The oxidized nature of apatites, when considered together with the low fO_2 recorded by the meteorite and reduced nature of apatites from minimally altered Shergotty and lunar rocks suggest that these measurements and/or the apatite grains themselves are subject to contamination by secondary oxidative alteration events on Earth and/or Mars.

[1] Brounce M. et al. (2019) *Am. Min., 104,* 307-312. [2] Konecke B.A. et al. (2019) *Geochim. Cosmochim. Acta, 265,* 242-258. [3] Wadhwa M. (2001) *Science, 291,* 1528-1530. [4] Ross et al. (2010) *LPSC 2010.*