A Diffusion-Based Analysis of Soil Nitrous Oxide Concentrations and its Stable Isotope Composition

JENNIFER V MILLS¹ AND RONALD AMUNDSON²

¹University of California, Berkeley

²University of California

Presenting Author: earthy@berkeley.edu

A mathematical model for interpreting the concentration and stable isotope composition of soil N₂O is presently unavailable. Here the processes that affect soil N₂O are embedded in a diffusion/reaction model. Numerical experiments are compared to published data to demonstrate how various soil processes influence depth profiles and surface fluxes of soil N₂O, $\delta^{15}N_{N2O}$, and $\delta^{18}O_{N2O}$.

Model predictions and empirical data suggest that the isotope composition of the net N₂O soil flux, in soils that have N₂O consumption, is a function of the net flux rate. Asymptotically large negative or positive $\delta^{15}N_{flux}$ values occur as the net soil N₂O flux approaches zero from positive or negative flux rates, respectively. The reverse occurs with $\delta^{18}O$ values. This implies that the isotopic imprint of soil fluxes to the global atmospheric N₂O pool is much more variable than previously suggested.

We demonstrate how modeling can be used to extract inferences of gross production/consumption patterns from depth profiles of $\delta^{15}N$ values and N₂O concentrations, and identify key sources of uncertainty that limit our ability to constrain them. Due to the effects of gross consumption, and multiple sources of N₂O, simple mixing models are unlikely to constrain the isotope composition of the biological sources of soil N₂O.

Like other soil gases, the concentration and isotope depth profiles of N_2O are largely uninterpretable without a physicsbased model. Process-based interpretations have an ability to improve our ability to understand of the role of soil processes in the global N_2O biogeochemical framework.