Sulphur behaviour and oxygen fugacity variation in Mt. Etna system revealed by melt inclusions

EMANUELA M. GENNARO¹, GIADA IACONO-MARZIANO², ANTONIO PAONITA³, YVES MOUSSALLAM⁴, NIAL PETERS⁵, MICHEL PICHAVANT⁶ AND CAROLINE MARTEL²

¹Università G. D'Annunzio

²Institut des Sciences de la Terre d'Orléans - CNRS

³Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Palermo

⁴Lamont -Doherty Earth Observatory, Columbia University

⁵University College London

⁶Institut des Sciences de la Terre d'Orléans

Presenting Author: emanuelagennaro@live.it

It has long been recognized that melt inclusions (MIs) have the potential for providing insight into how magmas and their volatiles evolve during cooling and crystallization.

We analysed H_2O , CO_2 , S and Cl contents of olivine-hosted MIs in several eruptive products of Mt. Etna (Italy), together with their major element composition, and iron speciation (Fe³⁺/ Σ Fe). Using these data, we investigated fractional crystallization, degassing and redox conditions variations occurring during magmatic ascent.

MIs have composition extending from volatile-rich picrobasaltic toward volatile-poor evolved trachybasalt. The picrobasaltic MIs are extremely enriched in H₂O and CO₂ (up to 5.9 and 0.58 wt.% respectively). S content in Etnean MIs ranging from some ppm up to more than 4000 ppm, whereas the oxygen fugacity (fO_2 , estimated using XANES Fe³⁺/ Σ Fe ratios and oxybarometers models) ranges from NNO-0.9±0.1 to NNO+1.6±0.2, with NNO being the Nickel-Nickel Oxide buffer [1].

Based on (i) S concentration and (ii) oxygen fugacity estimates in MIs, and using an empirical model predicting the variation of S partitioning between fluid and melt phases ($DS^{fluid/melt}$) upon variations in P, T and fO_2 , our research suggests that during magmatic ascent in the Etnean system a fO_2 decrease occurs, affecting the S behaviour.

The empirical $DS^{fluid/melt}$ model coupled to MELTS code [2, 3] provides evidence of fO_2 decrease during volatile exsolution and crystal fractionation of olivine, clinopyroxene, spinel and plagioclase, upon T and P decrease. The fO_2 diminution is responsible for the increase in $DS^{fluid/melt}$, and thus the decrease of S solubility in the melt and, consequently, for the increasing exsolution of S (which further enhances the reduction of fO_2) from the magma before eruption.

References

 Gennaro, Paonita, Iacono-Marziano, Moussallam, Pichavant, Peters & Martel (2020), Journal of Petrology, 61, 10.
Ghiorso & Sack (1995), Contribution to Mineralogy and Petrology, 119, 197-212.
Smith & Asimow (2005), Geochemistry Geophysics Geosystems 6, Q02004.