Oceanic nutrient rise and the late Miocene inception of Pacific oxygendeficient zones

XINGCHEN TONY WANG^{1,2}, YUWEI WANG¹, ALEXANDRA AUDERSET^{3,4}, DANIEL M SIGMAN⁵, HAOJIA ABBY REN⁶, ALFREDO MARTINEZ-GARCIA³, GERALD H. HAUG^{3,4}, ZHAN SU⁷, YIGE ZHANG⁸, BIRGER RASMUSSEN⁹, ALEX SESSIONS² AND WOODWARD FISCHER²

¹Boston College
²California Institute of Technology
³Max Planck Institute for Chemistry
⁴ETH Zurich
⁵Princeton University
⁶National Taiwan University
⁷University of Toronto
⁸Texas A&M University
⁹The University of Western Australia
Presenting Author: wangvt@bc.edu

The modern Pacific Ocean hosts the largest oxygen-deficient zones (ODZs), where oxygen concentrations are so low that nitrate is used to respire organic matter. However, the history of these ODZs is not well understood, hampering a mechanistic prediction of how these ODZs might evolve in the future under global warming. In a 12-million-year (Ma) record from the eastern Pacific, we observed a gradual increase in foraminiferabound nitrogen isotopes (¹⁵N/¹⁴N) since the late Miocene (8-9 Ma ago), with low ¹⁵N/¹⁴N prior to 9 Ma indicating the absence of ODZs. Coinciding with the ${}^{15}N/{}^{14}N$ change is an increase in the ocean's nutrient content reconstructed from the P and Fe concentrations of hydrothermal sediments at the same site. A simple box model calculation incorporating the ¹⁵N/¹⁴N and nutrient content records yields a strong linear correlation $(r^2>0.98)$ between the ocean's nutrient content and water-column denitrification rates since 8 Ma, indicating the nutrient rise was probably necessary for the inception of modern ODZs. The early part of the nutrient rise also coincides with the global benthic carbon isotope (¹³C/¹²C) decline and C4 expansion on land, consistent with the previous suggestion that there was an increase in the delivery of nutrients to the ocean in the late Miocene. A rise in the ocean's nutrient content would have caused an increase in the ocean's "biological carbon pump" and a sequestration of CO₂ from the atmosphere into the deep ocean, contributing to the global cooling and other observed environmental and evolutionary changes (e.g., C4 photosynthesis) since the late Miocene.