Experimental characterisation of basalt carbonation by seawater-dissolved CO₂ at 130 °C

 $m{MARTIN VOIGT}^1$, CHIARA MARIENI 2 , ANDRE BALDERMANN 3 , IWONA M. GALECZKA 4 , DOMENIK WOLFF-BOENISCH 5 , ERIC H. OELKERS 2 AND SIGURDUR R GISLASON 1

Presenting Author: martinvoigt@hi.is

The interaction of marine basalt with percolating seawater in low-temperature ocean floor hydrothermal systems over millions of years leads to calcite and aragonite formation. The presence of these minerals in marine basalts provides evidence for substantial CO2 fixation in these rocks. Laboratory experiments to quantify this process were performed by reacting mid-ocean-ridge-basalt (MORB) glass with North Atlantic Seawater charged with CO₂ at 130°C in batch experiments lasting up to 5 months. For experiments initiated using seawater charged with ~ 2.5 bar CO₂ partial pressure (pCO₂) calcite and aragonite are the first carbonate minerals to form, later succeeded by aragonite (± siderite and ankerite). For experiments started using seawater charged with ~ 16 bar pCO_2 magnesite was the only carbonate mineral observed to form. In total approximately 20 % of the initial CO₂ in the reactors were mineralized within five months. This carbonation rate is similar to corresponding rates observed in freshwater-basalt-CO2 interaction experiments and during field experiments of the carbonation of fresh basalts in response to CO2-charged freshwater injections in SW-Iceland. Our experiments thus suggest that CO2-charged seawater injected into submarine basalts will mineralize rapidly. Notably at pCO₂ of tens of bars, magnesite will form, preventing the formation of Mg-rich clays, which might otherwise compete for the Mg cation and pore-space in the submarine basaltic crust. This suggests that the injection of CO2-charged seawater into subsurface basalts can be an efficient and effective approach to the long-term safe mineral storage of anthropogenic carbon.

¹Institute of Earth Sciences, University of Iceland

²Géosciences Environnement Toulouse-CNRS

³Graz University of Technology

⁴University of Iceland

⁵Curtin University