Oxygen Isotopic Fingerprints on the Phosphorus Cycle Within the Subseafloor Biosphere

MINGYU ZHAO¹, RUTH BLAKE², NOAH J. PLANAVSKY², DEB P JAISI³, YUHONG LIANG², SAE JUNG CHANG⁴ AND DEREN DOGRU²

¹University of Leeds ²Yale University ³University of Delaware ⁴Korea Basic Science Institute, Seoul Center Presenting Author: earmzh@leeds.ac.uk

The oxygen isotopic composition of phosphate holds important information on P cycling and microbial activity due to the distinct oxygen isotopic fractionations accompanying multiple P pathways and metabolic processes. Here we report the oxygen isotopic compositions (δ^{18} O) of both dissolved inorganic phosphate (DIP) and sedimentary phosphate in deep-sea sediments to over 200m depths at ODP Site 1230. We have placed the results into a quantitative framework and found that the $\delta^{18}O$ value of DIP $(\delta^{18}O_{DIP})$ is mainly controlled by three pathways of P cycling at Site 1230: (1) release of DIP by enzymatic degradation of organic matter, (2) removal of DIP by the precipitation of authigenic apatite, and (3) enzyme-catalyzed O-isotopic exchange between phosphate and water. In particular, there is a shift of $\delta^{18}O_{DIP}$ towards equilibrium around 140m below seafloor, in parallel with a change in microbial communities. This suggests δ^{18} O of phosphate as a potential proxy for microbial activities in the subseafloor deep biosphere. Our model simulations also suggest that the rate of O-isotopic exchange is correlated with the rate of organic matter decomposition, implying microbially and enzymatically controlled isotopic exchange. Lastly, bulk sediment $\delta^{18}O_P$ values as well as the abundance of each sediment phosphate phase (detrital apatite, authigenic apatite and Fe-bound phosphate) suggests that authigenic apatite and/or Fe-bound phosphate can record the δ^{18} O value of porewater DIP during their formation.