Analytical investigations to estimate phosphorus re-dissolution rates in trace levels of selected topsoils and river sediments

STEFFEN HELLMANN^{1,2}, GÜNTER KIESSLING², MATTHIAS LEITERER², THORSTEN SCHÄFER¹, MARCUS SCHINDEWOLF² AND WOLF VON TÜMPLING^{3,4}

¹Friedrich Schiller University Jena

²Thuringian State Office for Agriculture and Rural Areas – TLLLR

³Helmholtz Centre for Environmental Research - UFZ

⁴Friedrich-Schiller-Universität Jena

Presenting Author: steffen.hellmann@uni-jena.de

Anthropogenic phosphorus (P) input from different fertilised agricultural topsoils into surface water and re-dissolution from sediments play a vital role in eutrophication. This study aimed to (i) analyse the P input and re-dissolution processes into streams/rivers and (ii) to study the effectiveness of the riparian strip in reducing P emissions from diffuse sources. Three laboratory experiments were designed to analyse P re-dissolution and leaching behaviour from topsoils and sediments and further extrapolated to reality based on the P main input path into surface waters, which is erosion [1].

In all three experiments, the first extraction after drying and sieving had significantly higher total P concentrations compared to inorganic phosphate, which was attributed to organic P. It was found, that the P re-dissolution rate was strongly related to the O_2 concentration, E_h , T, pH and ionic strength. It was shown that the P re-dissolution rate decreased with increasing dissolved Ca^{2+} , Fe²⁺ and Mn²⁺ present.

The results indicated that the main P source into surface waters was leaching from sediment interstitial sites (57.5%) received due to percolation while the P re-dissolution via diffusion (13%), due to two heavy rain events (17%) and leaching processes through soil interstitial sites (12.5%) only played a minor role. The "Bund/Länderarbeitsgemeinschaft Wasser (LAWA)" orientation value causing eutrophication for total P (0.10 mg L⁻¹) [2] was exceeded in all sandy soils (0.17-0.85 mg L⁻¹), only slightly in the clayey soils (≤ 0.11 mg L⁻¹) and not in both sediments (< 0.08 mg L^{-1}). P-Fertilisation led to higher extracted P concentrations from soil by deionised/synthetic water than unfertilised soils. However, local differences such as a steeper slope, different soil compositions (sand, clay content), as well as poorer buffering due to lower lime content were the decisive reasons for a higher risk of eutrophication. The effectiveness of the riparian strip at the sites investigated is discussed as well.

References

[1] Tetzlaff, Kreins, Kuhr, Kunkel, Wendland (2017), *IBG 3 Agrosphäre*, 153–154.

[2] Bund/Länderarbeitsgemeinschaft Wasser (LAWA) (2015), RaKon Part B Workpaper, 13-14.