Experimental study of serpentinization and abiotic CH₄ production in martian conditions

VALENTIN M FORTIER^{1,2}, VINCIANE DEBAILLE², VÉRONIQUE DEHANT^{1,3}, BENJAMIN BULTEL⁴, DAMIEN P DEBECKER¹, PAULINA PAZ MELO BRAVO¹, YASUHITO SEKINE⁵, SHUYA TAN⁶ AND NATSUMI NODA⁶

¹Université Catholique de Louvain-la-Neuve (UCLouvain)
²Université Libre de Bruxelles (ULB)
³Royal Observatory of Belgium (ROB)
⁴Universitetet i Oslo (UiO)
⁵Tokyo Institute of Technology, Earth-Life Science Institute
⁶Tokyo Institute of Technology
Presenting Author: valentin.fortier@uclouvain.be

The presence of methane on Mars remains highly debated in particular with contrasted detection results from Curiosity rover [1] and TGO [2]. In addition, the possible methane cycle is also poorly known: source(s) and removal process(es) remain currently undefined; and it is not known yet if this methane emissions might be related to a biological activity. Because of orbital detection of serpentine on Mars [3], and of the maficultramafic nature of Mars ancient crust, a putative abiotic candidate source is serpentinization associated with Sabatier reaction. The aim of this work is to experimentally study the production capacity of H_2 and mainly CH_4 by those abiotic processes in martian conditions to determine the viability of this origin.

Two different experimental setups are used in this work and will be presented. The first one is a flexible gold-cell type setup [4] nicknamed "Wet" in this study, running at the ELSI [5]. This type of setup, used in many previous similar studies, focuses on serpentinization and CH_4 production by Sabatier reaction in presence of liquid water. The second setup, nicknamed "Dry" in this study, is a gas reactor running at the IMCN [6]. This setup focuses on CH_4 production by Sabatier reaction in absence of liquid water. Preliminary results of the two experimental setups will be presented.

[1] Christopher R. et al. (2015), Science 347, 415-417.

[2] Korablev O. et al. (2019), Nature 569, 517-520, E2.

[3] Ehlmann B. L. et al. (2010), Geophys. Res. Lett. 37.

[4] Seyfried W. E. et al. (1979), American Mineralogist 64, 646-649.

[5] Tan S. et al. (2021), Icarus 357.

[6] Kim A. et al. (2018), *Applied Catalysis B: Environmental* 220, 615-625.