An improved method for ¹⁸²W/¹⁸⁴W isotope measurements with high precision and accuracy using multiple collector inductively coupled plasma mass spectrometry and its application for terrestrial samples - *GSJ Medal Lecture*

ASAKO TAKAMASA^{1,2}, KATSUHIKO SUZUKI¹, YUSUKE FUKAMI^{1,3}, TSUYOSHI IIZUKA⁴, MARIA LUISA GARCIA TEJADA¹, WATARU FUJISAKI⁵, YUJI ORIHASHI⁶ AND TAKUYA MATSUMOTO⁷

¹JAMSTEC ²JANUS ³Gakushuin University ⁴The University of Tokyo ⁵University of Tsukuba ⁶Hirosaki University ⁷IAEA

Presenting Author: atakamasa@gmail.com

The relatively short-lived nuclide ¹⁸²Hf decays to ¹⁸²W. Before the ¹⁸²Hf extinction. Hf-W was fractionated in the early Earth. resulting in ¹⁸²W/¹⁸⁴W variation in terrestrial rocks. A very precise method is required to measure the subtle variation of ¹⁸²W^{/184}W in terrestrial rocks. In this study, an improved method to measure the ¹⁸²W/¹⁸⁴W ratio of terrestrial rocks with high precision and accuracy was achieved. Tungsten was extracted from the digested sample solution with 4-methyl-2-pentanone, purified by both cation and anion exchange chromatography, and W isotope ratios were subsequently measured using a desolvation nebulizer and a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS). Sample pretreatment removed matrix elements with masses close to the W isotopes (e.g., Hf, Ta, Os, Nb and Mo dimers), thereby removing the effect of these elements on the ¹⁸²W/¹⁸⁴W ratio measurements. The W standard solutions treated by ion-exchange chromatography and/or solvent extraction showed mass independent fractionation, with ¹⁸³W missing even after mass dependent fractionation correction of the measured isotope data. As previously reported, the corrected ¹⁸²W/¹⁸⁴W ratio increases when the ¹⁸³W/¹⁸⁴W ratio with ¹⁸³W defect is used for mass fractionation correction. However, for the basalt standard sample (JB-2), an accurate ¹⁸²W/¹⁸⁴W ratio was obtained by our standard-bracketing correction even when ¹⁸³W was used for mass fractionation correction. This result indicates that it is also possible to correct the effect of mass-independent fractionation on the ¹⁸³W/¹⁸⁴W ratio by performing sample standard bracketing using a W standard solution subjected to the same procedure used for the sample. The main advantage of the method developed here is the small sample volume required (0.2-0.3 g, 50-80 ng W for JB-2) compared to other reported methods (typically 0.7-15 g, 500-1000 ng W). This reduction in sample

volume is made possible by the removal of matrix components from the sample solution. The cleaning of the desolvation nebulizer membrane between analyses also contributed to the higher W ion beam intensity stability and precision. Results from the analysis of different basalts from Loihi, Kilauea, and Ontong Java Plateau, with various W isotopic compositions that are consistent with previous studies, demonstrate the reliability of the method.