Isotope signs (²³⁴U/²³⁸U, ²H, ¹⁸O) for the paleo-permafrost existence in European Russia

EVGENII IAKOVLEV¹, IGOR TOKAREV^{1,2}, SERGEY ZYKOV¹, STANISLAV IGLOVSKY¹ AND NIKOLAY IVANCHENKO^{1,3}

¹N. Laverov Federal Centre for Integrated Arctic Research (FCIARctic)

²St. Petersburg State University

³Northern (Arctic) Federal University Presenting Author: yakov24lev99@mail.ru

Global climatic variations have a significant impact on isotopic and chemical composition of the underground hydrosphere. In particular, glacial meltwater formed from the permafrost degradation, as a rule, has a light composition of stable isotopes (δ^{13} C, δ^{18} O, and δ^{2} H) [1]. Apparently, this water should also be marked with excess uranium-234 [2]. We studied groundwater in the central part of the East European Plain on the right bank of the Volga River (middle course) to a depth of 400 m. During the Last Glacial Period, there was an area of continuous permafrost with a thickness of up to 200-250 m and with temperatures of about -5°C [3]. Comparison isotopic and chemical data shows the three-component mixture of groundwater. The first component is modern water, which is unambiguously recorded by the presence of tritium (³H). It is freshwater with salinity S<0.5 g/L, it has the least depletion in the isotopic composition of hydrogen and oxygen with $\delta^{18}O \rightarrow -12,9\%$ and $\delta^{2}H \rightarrow -90\%$ that is close to modern precipitation of the region, and practically equilibrium uranium $^{234}\text{U}/^{238}\text{U}\rightarrow 1$. The second component, more likely, is the water of late and postglacial genesis. It is isotopically lightest water with $\delta^{18}O \rightarrow -17.0\%$ and $\delta^{2}H \rightarrow -119\%$ (maybe it is the water of glacial lake?), it has a slight increase in salinity S≈0.5-1.5 g/L, and a small excess of uranium-234 ²³⁴U/²³⁸U≈4. The third component, as we explaned, is the meltwater of the former permafrost. It is brackish water $S \rightarrow 3 \text{ g/L}$ in which a significant growth of salinity is mostly associated with increase in the sulfate content. It could be the result of both presence of evaporites in the water-bearing sediments and the increased solubility of sulfates at near-zero temperature. This water has an intermediate composition of the stable isotopes with δ^{18} O \approx -15.0‰ and δ^{2} H \approx -110‰, and maximum disequilibrium in uranium ${}^{234}U/{}^{238}U \rightarrow 15.7$. The abnormal excess of uranium-234 in groundwater is probably the result of its predominantly leaching from a mineral lattice of water-bearing sediments during the thawing of permafrost.

The study was supported by Russian Science Foundation (project No 20-77-10057).

[1] Vasil'chuk et al.(2018)Geoscience Frontiers,2,471-483 [2] Tokarev et al.(2021)Geochemistry Int. in press. [3] Sychova(2012)Cryosphere,4,45-56.