Biogeochemical response of New Caledonia lagoon sediments to tropical events: a numerical modeling approach

ERIC VIOLLIER¹, PAULINE MERROT², OLIVIER RADAKOVITCH³, GUILLAUME MORIN⁴, JEAN-MICHEL FERNANDEZ⁵, BENJAMIN MORETON⁵, STANLEY I NMOR⁶ AND FARID JUILLOT⁷

 ¹LSCE CNRS
²UMR CNRS 5805 EPOC - OASU
³IRSN
⁴Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 Sorbonne Université-CNRS-MNHN-IRD
⁵AEL Environnement
⁶LSCE/CNRS CEA UVSQ University Paris-Saclay
⁷ERL IRD 206, UMR 7590 CNRS-MNHN-Sorbonne Université

Presenting Author: eric.viollier@lsce.ipsl.fr

New Caledonia main island is made of ultramafic rocks largely covered by metal-rich laterites. Mining activity enhances erosion and detrital deposit to the lagoon coastline. This anthropogenic process is itself enhanced by tropical cyclones. This numerical work explores long term early diagenesis processes, especially the formation of authigenic minerals such iron sulfides and "green clays" in shallow sediment. As well, the short term biogeochemical response is investigated regarding different scenarios: a massive sediment deposit due to river flooding and sediment resuspension events. Modeling outputs are compared to results obtained in 2016 and 2018 from campaigns at sea in the Northwest of New Caledonia.