Goldschmidt 2021 Abstract https://doi.org/10.7185/gold2021.4564

Small triple oxygen isotope variations in sulfate: Mechanisms and applications

XIAOBIN CAO AND HUIMING BAO

Nanjing University

Presenting Author: xiaobincao@nju.edu.cn

Triple oxygen isotope compositions in sulfate have been used to constrain ancient atmosphere pCO_2 and pO_2 , bio-productivity, and atmospheric sourced sulfate. However, these utilities are limited to big 17 O anomalies. Small Δ^{17} O deviations are not explored in geological records, due to poor triple oxygen isotope resolution among different processes and therefore multiple interpretations. Here, we explore the small Δ^{17} O variations in sulfate associated with microbial sulfate reduction and pyrite oxidation through Monte Carlo and theoretical calculations. Our results show that pyrite oxidation can produce small positive Δ^{17} O, even with today's O₂, bearing a Δ^{17} O value of ~ -0.5‰, as oxidant. Microbial sulfate reduction process can shift sulfate Δ^{17} O values towards negative. We attribute these characteristic Δ^{17} O values in sulfate to a combination of oxygen isotope massdependent fractionation during sulfate formation and consumption processes. The framework for small Δ^{17} O variations constructed here is then applied to recent observations. We demonstrate that small sulfate Δ^{17} O values can reveal past hydrological cycles and distinguish sulfate sources. Meanwhile, there exists uncertainties whose reduction requires multiple calibration studies.