Triple Oxygen Isotopic Compositions of Ocean Water from Mariana Trench

YING LIN^{1,2}, NANPING WU¹, KAIWEN TA¹, AMAELLE LANDAIS³ AND XIAOTONG PENG¹

 ¹Institute of Deep Sea Science and Engineering, Chinese Academies of Sciences
²University of California, Riverside
³LSCE - Institut Pierre Simon Laplace
Presenting Author: yinglin@ucr.edu

High precision triple oxygen isotope data on 40 water samples (5 to 10,923 m depths) collected from Mariana Trench at the vicinity of 10°N140°E are reported in this study. The analyses yield mean values of -0.084 ± 0.224 ‰ (1 σ), -0.061 ± 0.117 % (1 σ) and -17 ± 5 ppm(1 σ) for δ^{18} O, δ^{17} O and Δ^{17} O, respectively. The range of δ^{18} O (-0.480 to 0.544 ‰) is consistent with NASA Global Seawater Oxygen-18 database for Mariana Trench (Figure 1). The average Δ^{17} O value of -17 ppm at Mariana Trench is statistically different from the average $\Delta^{17}O$ value of -5 ppm for 38 water samples collected at depths of 2-5390 m from Atlantic, Pacific, Mediterranean, and northern Red Sea [1]. The slope of the three-isotope-plot, λ , of Mariana Trench water is 0.5206 ± 0.0032 (Figure 2), indicating kinetic diffusion including molecular diffusion and turbulent/eddy diffusion ($\theta_{\rm k}$ = 0.5142) as the dominant processes in ocean body. The Δ^{17} O of – 17 ppm is identical to the ocean steady-state isotope mass balance model prediction of modern ice-free world [2]. The fluxes associated with major geological processes controlling the total oxygen budget of the oceans via lithosphere-hydrosphere interactions from pioneering studies [3, 4] would have to be modified significantly in order to obtain model predictions of seawater $\Delta^{17}O = -4$ ppm for modern ice-free world and $\Delta^{17}O = -4$ 5 ppm for modern world. The triple oxygen isotopic compositions of seawater from this study can contribute to the advancement of isotope thermometry based on mineral-water equilibrium, to the understanding of ocean isotope mass balance, and potentially contribute to the replenishment of international measurement standards based on ocean water.

[1] Luz and Barkan (2010), Geochim. Cosmochim. Acta. 74:6276-6286.

[2] Sengupta and Pack (2018), Chem. Geol. 495:18-26.

[3] Muehlenbachs (1998), Chem. Geol. 145:263–273.

[4] Muchlenbachs and Clayton (1976), J. Geophys. Res. 81:4365.

