Prediction of crystal structures and motifs in the Fe-Mg-O system at Earth's core pressures

YANG SUN¹, RENATA M. WENTZCOVITCH¹, RENHAI WANG², FENG ZHENG³, YIMEI FANG³, SHUNQING WU³, ZIJIN LIN², CAI-ZHUANG WANG⁴ AND KAI-MING HO⁴

¹Columbia University

²University of Science and Technology of China

³Xiamen University

⁴Iowa State University

Presenting Author: ys3339@columbia.edu

Fe, Mg, and O are among the most abundant elements in terrestrial planets. While the behavior of the Fe-O, Mg-O, and Fe-Mg binary systems under pressure have been investigated, there are still very few studies of the Fe-Mg-O ternary system at relevant Earth's core and super-Earth's mantle pressures. Here, we use the adaptive genetic algorithm (AGA) to study ternary Fe_xMg_yO_z phases in a wide range of stoichiometries at 200 GPa and 350 GPa. We discovered three dynamically stable phases with stoichiometries FeMg₂O₄, Fe₂MgO₄ and FeMg₃O₄ with lower enthalpy than any known combination of Fe-Mg-O highpressure compounds at 350 GPa. With the discovery of these phases, we construct the Fe-Mg-O ternary convex hull. We further clarify the composition- and pressure-dependence of structural motifs with the analysis of the AGA-found stable and metastable structures. Analysis of binary and ternary stable phases suggest that O, Mg, or both could stabilize a BCC iron alloy at inner core pressures.