A thermodynamic model for {Pb²⁺−H⁺−Na⁺−K⁺−Mg²⁺−Cl⁻−OH⁻ }aq at 298 K, 0.1 MPa, and 0 ≤ ionic strength ≤ solid saturation

DR. CHARLES S OAKES

unaffiliated

Presenting Author: oakescs@netscape.net

A Pitzer ion-interaction model is presented for the Pb²⁺–H⁺–Na⁺–K⁺–Mg²⁺–Cl⁻–OH⁻ system at 298 K and 0.1 MPa. Model parameters for interactions not involving Pb species were taken from Harvie et al. [1]. Dimensionless standard state chemical potentials for all Pb species, including solids and excepting Pb²⁺, were fitted; the NEA value was used for Pb²⁺. Our model reproduces the most accurate emf and solubility data from infinite dilution to solid saturation for all Pb-chloride salts. The model also reproduces PbCl₂(cr) solubility in HCl(aq) \leq 9 molal.

In contrast to the 21 interaction parameters involving Pbsolute species in Felmy et al. [2], our model uses only 8 – none of which are "ternary" or neutral species terms. The Felmy model is based upon faulty data and uses the Millero & Byrne [3] model parameters for PbCl₂ + H₂O. The latter model is valid to *I* \leq 1 molal, however, it uses a C_{Zn,Cl} parameter as an analog for C_{Pb,Cl}. Adoption of this term, with a sign error, undoubtedly contributed to the peculiar and excessive parameterization in the Felmy model.

[1] Harvie et al. (1984) Geochim. Cosmochim. Acta 48, 723.

[2] Felmy et al. (2000) Geochim. Cosmochim. Acta 64, 3615.

[3] Millero & Byrne (1984) Geochim. Cosmochim. Acta 48, 1145.

