Origin of non-equilibrium uranium
$^{234}\text{U}/^{238}\text{U}$ in Barents Sea

IGOR TOKAREV1,2, EVGENII IAKOVLEV2, SERGEY ZYKOV2 AND IRINA ZIMINA3

1St. Petersburg State University
2N. Laverov Federal Centre for Integrated Arctic Research (FCIARctic)
3North-West Administration on Hydrometeorology and Environmental Monitoring

Presenting Author: tokarevigor@gmail.com

Within the Arctic marine expedition “Transarctic-2019” (research vessel «Mikhail Somov», Arctic and Antarctic Research Institute, St.Petersburg, Russia) the isotopic composition of uranium $^{234}\text{U}/^{238}\text{U}$, stable isotopes ($\delta^2\text{H}, \delta^{18}\text{O}$) and chemical parameters of seawater of the Barents Sea were studied. The data indicate the multicomponent of dissolved substance sources and seawater. Measured uranium isotope ratios $^{234}\text{U}/^{238}\text{U}=0.97–1.73$ differ significantly from the average for the World Ocean 1.145 ± 0.003 [1]. Ratios $^{234}\text{U}/^{238}\text{U}<1.13$ in the Barents Sea are due to the contribution of the Arctic Ocean water masses and river runoff. The maximum ratio $^{234}\text{U}/^{238}\text{U}>1.3$ were found near the western coast of Severny Island of Novaya Zemlya covered with an inner ice cap.

Probable source of ^{234}U excess is groundwater containing meltwater from permafrost. The mechanism of its anomalous enrichment in uranium-234 may be as follows. During the Weichselian glaciation, secular equilibrium in the ^{238}U chain for mineral lattice could be upset only due to ^{234}Th recoil. But this process is negligible if the mineral grain size is >0.1 mm. As the liquid water was absent in the permafrost zone, the ^{234}U could leave lattice only due to diffusion into the non-freezing water film the host rocks and sediments, which has a small chemical capacity. After the start of permafrost thawing, liquid water appeared and leached ^{234}U from the water-bearing rocks predominantly in comparison to ^{238}U due to the high geochemical mobility of ^{234}U.

In continental conditions confirmation of this mechanism was obtained in the study of groundwater, including the determination of $\delta^{18}\text{O}, \delta^2\text{H}, ^{234}\text{U}/^{238}\text{U}$ and helium dating [2, 3]. Detection of increased $^{234}\text{U}/^{238}\text{U}>1.3$ ratios in modern seawater correlates with an increase of ^{234}U excess in corals and carbonate sediments of the Arctic Seas during warm periods [4].

The study was supported by Russian Science Foundation project No 20-77-10057 and by the grant of the President of Russian Federation for young scientists MK-1919.2020.5.