Origin of non-equilibrium uranium (²³⁴U/²³⁸U) in Barents Sea

IGOR TOKAREV^{1,2}, EVGENII IAKOVLEV², SERGEY ZYKOV² AND IRINA ZIMINA³

¹St. Petersburg State University

²N. Laverov Federal Centre for Integrated Arctic Research (FCIARctic)

³North-West Administration on Hydrometeorology and Environmental Monitoring

Presenting Author: tokarevigor@gmail.com

Within the Arctic marine expedition "Transarctic-2019" (research vessel «Mikhail Somov», Arctic and Antarctic Research Institute, St.Petersburg, Russia) the isotopic composition of uranium ²³⁴U/²³⁸U, stable isotopes (δ^2 H, δ^{18} O) and chemical parameters of seawater of the Barents Sea were studied. The data indicate the multicomponent of dissolved substance sources and seawater. Measured uranium isotope ratios ²³⁴U/²³⁸U=0.97–1.73 differ significantly from the average for the World Ocean 1.145±0.003 [1]. Ratios ²³⁴U/²³⁸U<1.13 in the Barents Sea are due to the contribution of the Arctic Ocean water masses and river runoff. The maximum ratio ²³⁴U/²³⁸U>1.3 were found near the western coast of Severny Island of Novaya Zemlya covered with an inner ice cap.

Probable source of ²³⁴U excess is groundwater containing meltwater from permafrost. The mechanism of its anomalous enrichment in uranium-234 may be as follows. During the Weichselian glaciation, secular equilibrium in the ²³⁸U chain for mineral lattice could be upset only due to ²³⁴Th recoil. But this process is negligible if the mineral grain size is > 0.1 mm. As the liquid water was absent in the permafrost zone, the ²³⁴U could leave lattice only due to diffusion into the non-freezing water film the host rocks and sediments, which has a small chemical capacity. After the start of permafrost thawing, liquid water appeared and leached ²³⁴U from the water-bearing rocks predominantly in comparison to ²³⁸U due to the high geochemical mobility of ²³⁴U.

In continental conditions confirmation of this mechanism was obtained in the study of groundwater, including the determination of $\delta^{18}O$, $\delta^{2}H$, $^{234}U/^{238}U$ and helium dating [2, 3]. Detection of increased $^{234}U/^{238}U>1.3$ ratios in modern seawater correlates with an increase of ^{234}U excess in corals and carbonate sediments of the Arctic Seas during warm periods [4].

Henderson & Anderson (2003) Rev. Mineral. Geochem.
52(1), 493-531. [2] Tokarev et al., (2009a) Water Res., 36, 206–
[3] Tokarev et al., (2009b) Water Res., 36, 345–356. [4] Tokarev et al., (2021) Geochemistry Int. in press.

The study was supported by Russian Science Foundation project No 20-77-10057 and by the grant of the President of Russian Federation for young scientists MK-1919.2020.5.