Total alkalinity production in a mangrove ecosystem reveals an overlooked Blue Carbon component

VINCENT SADERNE¹, MARCO FUSI², TIMOTHY THOMSON³, AISLINN DUNNE⁴, FATIMA MAHMUD⁴, FLORIAN ROTH^{5,6}, SUSANA CARVALHO⁴ AND CARLOS M DUARTE⁴

¹King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC)
²Edinburgh Napier University
³University of Waikato
⁴King Abdullah University of Science and Technology
⁵Stockholm University
⁶University of Helsinki

Presenting Author: Vincent.saderne@kaust.edu.sa

Mangroves have the capacity to sequester organic carbon (Corg) in their sediments permanently. However, the carbon budget of mangroves is also affected by the total alkalinity (TA) budget. Principally, TA emitted from carbonate sediment dissolution is a perennial sink of atmospheric CO2. The assessment of the TA budget of mangrove carbonate sediments in the Red Sea revealed a large TA emission of 403±17 mmol m⁻² d⁻¹, independent of light, seasons, or the presence of pneumatophores, compared to -36±10 mmol m⁻² d⁻¹ in lagoon sediment. We estimate the TA emission from carbonate dissolution in Red Sea mangroves supported a CO2 uptake of 345±15 gC m⁻² yr⁻¹, 23-fold the $C_{\rm org}$ burial rate of 15 gC m⁻² yr⁻¹. The focus on Corg burial in sediments may substantially underestimate the role of mangroves in CO2 removal. Quantifying the role of mangroves in climate change mitigation requires carbonate dissolution to be included in assessments.