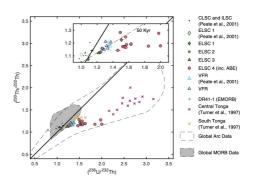
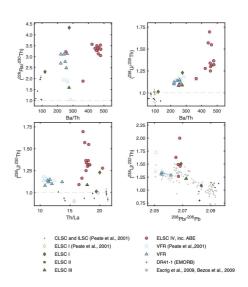
The Complicating Influence of Source Variability on the Applicability of U-Th-Ra Disequilibria as a Simple Chronometer of Deep Fluid Addition During Magma Genesis: A Case Study from the Eastern Lau Spreading Center

LISA B KANT¹, KENNETH WW SIMS¹, CHARLES LANGMUIR², JARED J STANDISH³ AND PETER J MICHAEL⁴


¹University of Wyoming ²Harvard ³University of Minnesota ⁴University of Tulsa

Presenting Author: lkant@uwyo.edu


In arc lavas, correlation between $(^{238}U/^{230}Th)$ and Ba/Th suggest that U enrichment reflects recent fluid addition. Positively sloped linear arrays on the (230Th/232Th) vs (²³⁸U/²³²Th) equiline diagram are often treated as isochrons with slopes that suggest 10-80 Kyr elapsed since metasomatism. However, this interpretation assumes that 1) the slab component is U-rich fluid with negligible Th and 2) the mantle wedge has constant (²³⁸U/²³²Th). If either assumption is false, the timesignificance of these arrays becomes less clear. Additionally, timescales given by (238U/230Th) conflict with those of (²²⁶Ra/²³⁰Th), which suggest fluid addition occurred within 10 Kyr. Although previous studies proposed explanations that reconcile these timescales [1], further research is needed. To examine this problem, we measured ²³⁸U-series disequilibria in Eastern Lau Spreading Center samples (ELSC, 19.4-22.6°S). Excluding samples from ELSC-IV (20.8-21.1°S), which have distinct ²³⁸U-²³⁰Th systematics, the data form a positively sloped array in (238U/232Th) vs (230Th/232Th) space, which could be interpreted as a 50 Kyr isochron. (238U/230Th) correlates well with Ba/Th, whereas (226Ra/230Th) correlates weakly, suggesting fluid enrichment influences ²³⁸U-²³⁰Th-²²⁶Ra disequilibria. Arcridge distance also effects (238U/230Th). Since the ELSC axis is oblique to the Tonga arc, distance between the two increases from 35-100 km moving S-N. This is reflected in northward decreasing (238U/230Th), (238U/232Th) and Ba/Th, and a transition from $(^{238}\text{U}/^{230}\text{Th}) > 1$ to $(^{238}\text{U}/^{230}\text{Th}) < 1$ at ~19.5°S between the ELSC and the CLSC [2]. While (226Ra/230Th) disequilibria suggest that fluid addition occurred within 10 Kyr, (²³⁸U/²³⁰Th) disequilibria suggest that ~50 Kyr has passed. However, other factors besides fluid addition have influenced $(^{238}U/^{230}Th)$ systematics. For instance, (238U/232Th) and 208Pb/206Pb are negatively correlated, indicating long-term (238U/232Th) heterogeneity in the mantle. Additionally, trends between (²³⁸U/²³⁰Th) and trace element ratios such as Th/La indicate that the slab component varies from N-S, and that volcanoclastic sediments influence ²³⁸U-²³⁰Th systematics in the southern

ELSC. Consequently, the observed $(^{230}\text{Th}/^{232}\text{Th})$ vs. $(^{238}\text{U}/^{232}\text{Th})$ array is not a true isochron, and thus caution is warranted when using $(^{238}\text{U}/^{230}\text{Th})$ and $(^{226}\text{Ra}/^{230}\text{Th})$ as chronometers of fluid addition during arc magmatism.

[1] Turner *et al.* (2000). *EPSL* **179**. [2] Escrig et al. (2009). *G*³ **10**.

ate et al. (2001). Petrology 42. Escrig et al. (2009). G3 10. Bezos et al. (2009). JGR 114.