Thermodynamics for clay minerals: calculation tools for estimating thermodynamic properties

PHILIPPE BLANC1, FABRIZIO GHERARDI2, PHILIPPE VIEILLARD SR.3, NICOLAS MARTY1, HELENE GAILHANOU1, STEPHANE GABOREAU1, BRUNO LETAT1, CLAUDIO GELONI4, ERIC GAUCHER5 AND BENOIT MADE6

1 BRGM
2 CNR
3 IC2MP-UMR7285-Hydrasa
4 ENI
5 Total SA, CSTJF
6 Andra

Presenting Author: p.blanc@brgm.fr

Two computing tools, ClayTherm and ISTherm, have been developed to estimate the thermodynamic properties of both anhydrous and hydrated clay minerals (ClayTherm), and of illite/smectite (I/S) mineral series (ISTherm). The first computing tool, ClayTherm, is devoted to thermodynamic property estimates for clay minerals. It combines several previously published estimation models [1, 2], including hydration aspects. It proposes an improved consistency among the different estimate methods and an interface allowing simplifying the calculation process for a wide range of clay mineral compositions. Verification is provided, against a set of solubility data, selected from previous literature.

A second application ISTherm was subsequently developed based on the first development. It focuses on the smectite-to-illite transformation, and it provides estimates for the thermodynamic properties of a series of illite/smectite (I/S) interstratified minerals. The estimates for a whole composition serie can be provided based on the composition of a single I/S sample. In the development process, the thermodynamic functions from ClayTherm have been supplemented with mixing energies extracted from the literature. A verification is proposed, considering the case of a natural I/S hydrothermal series from the Shinzan geothermal field (Japan). Phase relations and illitisation rates are found to be in agreement with previous mineralogical observations and solution chemical analyses.