How ¹⁷O excess in clumped isotope reference-frame materials and ETH standards affects reconstructed temperature

CASEY SAENGER¹, ANDREW SCHAUER², EMMA HEITMANN², KATHARINE HUNTINGTON² AND ERIC STEIG²

¹Western Washington University ²University of Washington

Presenting Author: casey.saenger@wwu.edu

Carbonate clumped isotopes have been widely applied as a paleothermometer, but various errors limit their application. Calculation of Δ_{47} requires a correction for mass interference from ¹⁷O, which traditionally assumes all analytes follow a linear relationship between ¹⁷O/¹⁶O and ¹⁸O/¹⁶O with a slope of 0.528 and a ${}^{17}O$ excess ($\Delta^{17}O$) of zero. Here, we evaluate these assumptions by measuring $\Delta^{17}O$ in Δ_{47} reference-frame gases and waters, our mass spectrometer working gas, and ETH standards 1, 2, 3 and 4. We systematically evaluate how the Δ^{17} O of these materials influence Δ_{47} values, and the magnitude of Δ_{47} error introduced by assuming a Δ^{17} O of zero. We find most Δ_{47} reference-frame materials and ETH standards have negative Δ^{17} O values, ranging from -300 to +38 permeg, which can largely be explained by equilibration with surface water at Earth surface temperature. Exceptions include CO2 equilibrated with evaporatively enriched water and CO₂ derived from fossil fuel combustion. CO₂ heated to 1000°C in quartz glass tubes shows a small, 5-10 permeg, increase in Δ^{17} O that may reflect contamination in the quartz. CO2 evolved from ETH standards exhibits mean Δ^{17} O values of -151 to -123 permeg, similar to most natural carbonates, but ETH 2 and 4 have greater variance. Our results show that assuming $\Delta^{17}O = 0$ can overestimate or underestimate measured Δ_{47} values, with the direction of change dependent on whether sample Δ^{17} O falls above or below the Δ^{17} O of the working gas. Similarly, assuming Δ^{17} O = 0 can also overestimate or underestimate Δ_{47} in the carbon dioxide equilibration scale (CDES), with the direction of change dependent on whether sample $\Delta^{17}O$ falls above or below reference-frame materials. The magnitude of this effect is significant, and is equivalent to an error on reconstructed temperature of 0.6-1.7°C for Earth surface conditions and 1.9-5.8°C in the shallow crust. While analytical and calibration errors are also important, the effect of Δ^{17} O needs to be considered for Δ_{47} thermometry to achieve its highest possible accuracy. The same is true for the recently introduced dual clumped isotope thermometer. We provide suggested laboratory protocols that best account for Δ^{17} O when measuring Δ_{47} .

