Assessing sulfur isotope variability in the Icelandic mantle: evidence from subglacial glasses and melt inclusions

S.A. HALLDÓRSSON^{1*}, E. RANTA¹, J.GUNNARSSON ROBIN¹, E. BALI¹, A. CARACCIOLO¹, S. ONO², H. JEON³, M.J. WHITEHOUSE³, M.E. HARTLEY⁴, J.K. DHALIWAL⁵, S. MATTHEWS⁶, A. STEFÁNSSON¹

 ¹Nordvulk, IES, University of Iceland, Reykjavík, Iceland (*correspondence saemiah@hi.is)
²MIT, Boston, MA, USA
³NORDSIMS, SMNH, Stockholm, Sweden
⁴University of Manchester, Manchester, UK
⁵University of California, Santa Cruz, CA, USA
⁶Johns Hopkins University, Baltimore, MD, USA

A considerable range in δ^{34} S values has been reported for Icelandic lavas [1], but potential flaws in older sulfur extraction methods [2] and the degassed nature of the analyzed lavas question the reliability of this dataset. We have therefore undertaken a systematic study following the newly proposed HF-extraction method [2] to evaluate the sulfur isotopic characteristics of Icelandic lavas. We focus on a suite of subglacial basalts (n=59) and a set of previously studied silicate melt inclusion from central Iceland (n=29) [3,4]. Select samples from subaerially-erupted lavas (n=15) exhibiting evidence for degassing have also been included. A new set of SIMS standards have been prepared following [2] for the purpose of obtaining high-quality δ^{34} S values from silicate glasses trapped in crystals.

Relatively high sulfur contents (>500 ppm) and S/Dy comparable to, but generally higher than, estimates for depleted MORB mantle (DMM: 150-310), are consistent with the relatively un-degassed nature of most samples analyzed. The entire sample suite records a large range in $\delta^{34}S$ values (-3.8 to +3.8‰ by SIMS and IRMS). Degassed samples display the highest δ^{34} S values whereas a more restricted range (-2.5 to +0.5‰) is observed for most samples containing >500 ppm. For this group, subglacial glass samples and silicate melt inclusions reveal overlapping $\delta^{34}S$ values, averaging at -1.2‰ (± 0.6 ; 1 σ , n=92), which is identical to estimates for DMM [2]. A group of high-MgO glasses record a large range in δ^{34} S values (from -3.8 to +0.5‰) at ~1100 ppm [S], exceeding greatly the range evident in another group of high-MgO glasses with ≤ 800 ppm [S]. This low- δ^{34} S group also reveals S/Dy as high as 615, suggesting primary (mantlederived) controls on δ^{34} S values in Icelandic basalts.

[1] Torssander, P. (1989), CMP *102*(1), 18–23. [2] Labidi, J., et al. (2012). CG, *334*, 189–198. [3] Caracciolo et al. (2020) Lithos, *352-353*, [4] Bali et al. (2018) CMP, *173:9*.