Development of On-site pCO₂ Analyzing System and Evaluation of its Applicability to Identify CO₂ Intrusion into Groundwater

Seung-Wook Ha¹, Hyun-Kwon Do², Hyun-Ji Kang², Won-Tak Joun¹, YeoJin Ju¹, Il-Ryoung Cho¹, Seong-Sun Lee¹, Kang-Kun Lee¹*, Seong-Taek Yun²

¹Seoul National University, South Korea (*correspondence: kklee@snu.ac.kr)
²Korea University, South Korea

Partial pressure of CO₂ (pCO₂) of groundwater is one of sensitive parameters to identify CO2 intrusion into groundwater from CO₂-stored reservoir. Despite of its potential as primary leakage indicator, many studies related to CO₂ leakage did not consider its importance because of the lack of direct monitoring technique. Open-loop and air-purging system (OLAPs) was developed to measure pCO₂ of groundwater and applied two field scale artificial CO₂ injection tests (Type 1: dissolved CO₂; Type 2: gaseous CO₂). During the type 1 injection test, pCO₂ elevated from 0.002 to 1.157 atm due to mineral reaction, which was corresponding to EC and alkalinity increase. During the type 2 test, however, pCO₂ elevated from 0.003 to 0.286 atm, although more CO₂ was injected than the type 1 test because large amount of injected gas escaped as free phase gas. Despite of relatively low pCO_2 than previous test, EC increased more. It can be inferred that gas phase intrusion can affect a larger space around the injection point than the dissolved phase intrusion. In addition, the results showed that pCO₂ was the most sensitive to CO₂ injection compared to other parameters, which indicated that pCO₂ can detect sensitively the CO₂ intrusion into shallow aquifer system.