Characteristics and implications of podiform-chromite hosted silicate inclusions in the Zedang ophiolite, Southern Tibet

Guolin Guo^{12*}, Wendy L. Mao², Ru Y. Zhang², Juhn G. Liou², W.G. Ernst², Xiaodong Liu¹, Yong Zhang¹, Bin Wu¹

- ¹ State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China (*correspondence: gglrobin@163.com)
- ² Department of Geological Sciences, Stanford University, Stanford, CA 94305-2115, U.S.A.

Mineral inclusions in Zedang Chromite

Chromite grains in the Zedang massive chromitite contain in-situ diopside lamellae, octahedral pseudomorphs of serpentine inclusions and other mineral inclusions of diopside, enstatite, hydrous silicates (such as Cr-bearing amphibole and linear serpentine).

Discussion of Results

Diopside lamellae-bearing chromite probably has a precursor possessing of $CaFe_2O_4$ -phase (CF phase) at > 12.5 GPa [1]. The individual in-situ octahedral pseudomorphs of serpentine inclusions are considered to be pseudomorphs after isometric ringwoodite [2]. Linear hydrous silicate inclusions implying a fluid infiltration along fracture zones at shallow depths during the period of the last stage

An alternative three-stage model will be used to interpret the formation and evolution of the Zedang chromite. This study on inclusions in chromite also provides a new window to explore the origin and evolution of unusually high-Pressure phase bearing ophiolitic podiform chromitite and mantle dynamics.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (41762005, 41262002) and the research of China Scholarship Council (grant no. 201800880002).

[1] Yamamoto (2009) *Lithos* **109**, 314-322. [2] Griffin (2016) JP **57**, 655-684.