In situ determination of Re-Os isotopes by LA-MC-ICP-MS using Daly detectors: preliminary results

Y. $GREAU^{1*}$, O. $ALARD^1$, S. Y. O'REILLY^1

¹ ARC Centre of Excellence CCFS, GEMOC, Dept. Earth & Environmental Sciences, Macquarie University, Australia (*correspondence: yoann.greau@mq.edu.au)

Elemental (eg. PGEs) and isotopic in situ characterisations of (mantle) sulfides are powerful tools to unveil and date magmatic processes. Unfortunately, due to analytical and sample limitations (mantle sulfides \emptyset <100 μ m), investigators commonly have the dilemma of choosing between trace elements or Re-Os isotopes. Last year we presented the first in situ LASS-MC-ICP-MS/ICP-MS acquisition of trace elements and Re-Os isotopes from a single ablation, therefore solving this Cornelian choice [1]. The Nu Plasma II has since been fitted with 2 new generation Daly detectors in place of the original electron multipliers. The Daly detector offers a more linear signal, a better faraday to multiplier gain stability, a wider peak flat as well as a larger dynamic range compared to conventional ion counters. Building on this upgrade and our previous success, we present newly acquired data investigating the advantages of such detectors for Re-Os isotopes characterisation of sulfides, and give the overall benefits for a LASS-MC-ICP-MS/ICP-MS applications such as in situ trace elements and Re-Os in sulfides.

The analytical setting is comprises a Photon-Machines 193nm excimer laser coupled to a Nu-Plasma II MC-ICP-MS fitted with 2 Daly detectors. Re-Os measurements were obtained by collecting masses 185 to 194 using a mixed array of faraday buckets (188 to 194), 2 Daly detectors (185 and 187) and 1 ion counter (186). When in LASS mode an Agilent 7700x ICP-MS is added to the set up. After ablation in a He atmosphere, the analyte is split using a Y connector and carried to the spectrometers via 1/8" tubing.

	Faraday buckets							Daly detector	Electron multiplier	Daly detector
Collector	H1	AX	L1	L2	L3	L4	L5	D0	IC1	D2
Mass	194	193	192	191	190	189	188	187	186	185
Pt	32.98		0.78		0.01			(Isotopic abundances)		
Ir		62.73		37.27						
Os			40.78		26.26	16.15	13.24	1.96	0.02	
Re								62.6		37.4

Table 1: Collector configuration and isotopic abundances.

[1] Gréau, Alard & O'Reilly (2019), Goldschmidt Conference Abstract

This abstract is too long to be accepted for publication. Please revise it so that it fits into the column on one page.