Rare earth element analysis of UR CAIs in CV3 chondrites by SRXRF

P.-T. GENZEL^{1*}, B. BAZI², A. N. KROT⁷, E. DE PAUW²,
B. VEKEMANS², M. A. IVANOVA⁴, C. MA⁵, A. M. DAVIS⁶,
M. LINDNER¹, J. GARREVOET³, G. FALKENBERG³, L.
VINCZE², F. E. BRENKER^{1,7}

¹Goethe University Frankfurt, Institute of Geoscience, Frankfurt, Germany (*correspondence: Genzel@em.uni-frankfurt.de), ²Department of Chemistry, Ghent University, Ghent, Belgium, ³PETRA III, DESY, Hamburg, Germany, ⁴Vernadsky Institute, Moscow, Russia,⁵California Institute of Technology, Pasadena, USA, ⁶University of Chicago, USA, ⁷HIGP, University of Hawai^ci at Mānoa, Honolulu, USA

Ca,Al-rich inclusions (CAIs) are characterized by volatility-fractionated rare earth element (REE) patterns (group I–VI) [e.g., 1,2]. CAIs with group II REEs are depleted in the most refractory [ultrarefractory (UR)] REEs and enriched in the less refractory REEs. The group II REEs resulted from condensation in a gaseous reservoir from which UR REEs were removed either by condensation or incomplete evaporation [3]. Little known about the specific mineral carriers of UR REEs. Therefore, CAIs with UR REE patterns, complementary to those with group II REEs, could provide important information on these carriers [4–7].

Here we report on REE patterns in individual minerals of three CV CAIs containing abundant very refractory Zr,Sc,Y-rich oxides and silicates, *Al-2, 33E-1*, and *3N-24* [9,10], measured with synchrotron radiation X-ray fluorescence spectrometry (SRXRF). The REE patterns in these CAIs have a strong UR trend for all measured phases, with heavy REEs strongly enriched over light REEs. Unique carrier phases of UR patterns were not identified, but are presumed to be Zr,Sc,Y-rich minerals. As consequence we infer that all constituents of single UR CAIs originate in the same solar nebula region possibly by condensation.

[1] Mason B. and Martin P. M. (1977) Smithson. Contrib. Earth Sci. 19:84–95. [2] MacPherson G.J. (2014) Treatise Geochem. 2:139–179. [3] Hu J.Y. et al. (2020) Lunar Planet. Sci. 51:1631. [4] Davis A. M. and Grossman L. (1979) Geochim. Cosmochim. Acta 43:1611–1632. [5] Davis A.M. (1991) Meteoritics 26:330. [6] Hiyagon H. et al. (2003) Lunar Planet. Sci. 34:1552. [7] Uchiyama K. et al. (2008) Lunar Planet. Sci. 39:1519. [8] Ivanova M.A. et al. (2012) Meteorit. Planet. Sci. 47:2107–2127. [9] Krot A.N. et al. (2019) Geochemistry 79:125519.