NO₂ and TMI Oxidations Are Important Mechanisms of Airborne Sulfate Aerosol Formation in Beijing, China during the Haze Event: Evidence by Sulfur Isotope Techniques

Mei-Yi Fan^{1,2,3}, Yan-Lin Zhang^{1,2,3}*, Yu-Chi Lin^{1,2,3}, Fang Cao^{1,2,3}

^{1.} Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, 210044, China.

² Key Laboratory Meteorological Disaster; Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing, 210044, China.

³. Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.

Sulfate (SO₄²⁻) is unambiguously an important chemical species, which directly influences climate changes, in the airborne aerosols. To date, its formation mechanism is still debated. To investigate the oxidation pathways of SO₂ to sulfate aerosols, PM_{2.5} aerosol samples were collected in Beijing from November 13 to December 2, 2018. In addition to water-soluble inorganic ions (WSIIs), sulfur isotope in sulfate (δ^{34} S-SO₄²⁻) was also determined. During the sampling period, the sulfate concentrations varied from 0.4 to 33.5 μ g m⁻³ with a mean value of 11.1 \pm 9.3 μ g m⁻³, which accounted for 18 % of WSIIs. Specifically, its concentration in haze days ($PM_{2.5} > 150 \ \mu g \ m^{-3}$) was 14.8 times higher than that in the clean days ($PM_{2.5} < 35 \ \mu g \ m^{-3}$), elucidating that sulfate was a pivotal species to induce the haze formation. In terms of δ^{34} S-SO₄²⁻, its value ranged from 1.9 to 6.4 ‰ and averaged at 4.4 ± 1.4 ‰. Using Rayleigh distillation model, the isotope fractionation factor between SO₂ and SO₄²⁻ was estimated to be 4.0 ± 1.2 %. Considering this fractionation factor, the formation pathways of SO_2 to SO_4^{2-} were quantified through Bayesian isotope mixing model. Our results showed that the contributions of SO₂ to sulfate via OH, H₂O₂/O₃, NO₂ and TMI oxidation were 21 %, 15 %, 29 % and 35 %, respectively. Note that the contributions of sulfate formation by NO2 and TMI on the haze days exceeded than that on the clean days by factors of 1.4-1.6, highlighting that NO₂ and TMI played important roles of elevated sulfate aerosols in the haze events in Beijing.

Corresponded to Yan-Lin Zhang (zhangyanlin@nuist.edu.cn; dryanlinzhang@outlook.com)