C-N-He-Ar Cycling at the Hikurangi Subduction Margin, New Zealand

GABE S. EPSTEIN^{1*}, GRAY E. BEBOUT¹, BRUCE W. CHRISTENSON², HIROCHIKA SUMINO³, IKUKO WADA⁴, CYNTHIA A. WERNER⁵, DAVID R. HILTON⁶

¹Dept. of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA, USA (*correspondence: gse216@lehigh.edu)

²National Isotope Center, GNS Science, Lower Hutt, NZ ³Dept. of Basic Science, University of Tokyo, Tokyo, Japan ⁴Dept. of Earth Sciences, University of Minnesota,

Minneapolis, MN, USA

⁵USGS-Contractor, New Plymouth, NZ

⁶Scripps Institution of Oceanography, La Jolla, CA USA

We are evaluating the cycling of C, N, and noble gases at the Hikurangi margin, with ~35 analyses of gases from across the forearc-arc-backarc and further analyses planned for April-May 2020. We present C-N concentrations and isotope compositions of sediments outboard of the trench and wall-rock metasediment in the Taupo Volcanic Zone (TVZ). We compare these data with noble gas and C-N data for gases from fumaroles and thermal springs. Ongoing work includes thermal modeling, thermodynamic calculations of prograde devolatilization, and estimation of TVZ CO₂ output flux.

The incoming sediment section at IODP Site 1520 consists of uppermost terrigenous trench-fill (7 \pm 3 wt.% carbonate, 0.39 \pm 0.17 wt.% organic C), pelagic sediment (61 \pm 21 wt.% carbonate, 0.24 \pm 0.15 wt.% organic C), and lowermost volcaniclastics (13 \pm 14 wt.% carbonate). Isotope compositions are relatively uniform, with $\delta^{15}N = +4.4 \pm 0.9\%$ (AIR), $\delta^{13}C_{carb} = +0.9 \pm 1.1\%$ (VPDB), and $\delta^{13}C_{red} = -25.9 \pm 1.2\%$ (VPDB). Wall-rock metasediments have $\delta^{15}N = +2.4$ to +6.4%, $\delta^{13}C_{red} = -25.0 \pm 1.9\%$. Trench-fill sediments are largely removed by accretion, thus the carbonate-rich section likely contributes more to the gas emissions.

The dominant C-bearing gas phase in the forearc is CH₄ (δ^{13} C = -35 to -53‰) and that within the TVZ gases is CO₂ (δ^{13} C = -2 to -10‰). Forearc noble gas ratios have crustal to atmospheric values (\pm minor mantle contribution; 3 He/ 4 He = 0.2-1.7 R_A and 40 Ar/ 36 Ar \geq 296), while He-Ar and C-N isotope values of gases from the TVZ are consistent with mantle and recycled sedimentary contributions (3 He/ 4 He = 4–7 R_A, δ^{15} N = +1.3 \pm 0.9‰, and [N₂/ 3 6Ar]/AIR = 1–10). Overlap in δ^{13} Cred and δ^{15} N of incoming sediments and wall rocks complicates differentiation of C sources but, given the accretion of the trench-fill sequence, the apparent sediment-derived Corg component (\approx 30%, after [1]) and N in the gases could reflect contamination by Torlesse/Waipapa wall rocks.

[1] Sano & Marty (1995) Chem. Geol. 119, 265-274.