Mobility of Tl and Hg in the As-rich waste dumps of adit no. 25, former Allchar mine, North Macedonia

TAMARA ĐORĐEVIĆ¹, UWE KOLITSCH^{2,1}, PETR DRAHOTA³, MAGDALÉNA PEŘESTÁ³, JURAJ MAJZLAN⁴, STEFAN KIEFER⁴, GORAN TASEV⁵, TODOR SERAFIMOVSKI⁵, IVAN BOEV⁵, AND BLAŽO BOEV⁵

¹Department of Mineralogy and Crystallography, University of Vienna, Althanstr. 14, A-1090 Wien, Austria (tamara.djordjevic@univie.ac.at)

²Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, A-1010 Wien, Austria

³Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic

⁴Institute of Geosciences, Friedrich-Schiller-Universität, Carl-Zeiss-Promenade 10, 07745 Jena, Germany

⁵Faculty of Natural Sciences, University "Goce Delčev"-Štip, Goce Delčev 89, 2000 Štip, North Macedonia

In the northern part of the As–Sb–Tl–Au Allchar deposit, there is a prevalence of As-Tl mineralization accompanied with minor Sb and Hg. We used PXRD, SEM-EDS, EMPA, Raman spectroscopy, pore-water analysis, and chemical extractions to determine the distribution and speciation of Tl and Hg in the As-rich waste dumps of adit no. 25.

The As- and Tl-rich waste material (As: 0.48-14.7 wt.%; Tl: 0.02-1.44 wt.%) is mostly composed of orpiment, quartz, realgar, and scorodite, followed by gypsum and kaolinitegroup minerals. The TI-As sulfosalts lorandite, fangite, and raguinite are the primary Tl-sources and are mostly hosted in orpiment or realgar. The Hg-Tl-As(-Sb) sulfosalts vrbaite, simonite, and christite are the primary sources of both Tl and Hg. After leaching of Tl, As, and Sb from the latter, Hg immediately reacts to form fine-grained cinnabar. This secondary cinnabar and its oxidation products form thin alteration rims (< 10-15 µm) around the affected sulfosalt grains. The most common Tl-bearing precipitate is dorallcharite [TlFe³⁺3(SO₄)₂(OH)₆]. Its tiny crystals and spherulitic aggregates are often embedded in P-bearing (up to 2 at.%) scorodite. Tl is also accumulated in Mn oxides (up to 5 at.%) and thalliumpharmacosiderite.

The pore water (pH: 2.6-8.1) shows high concentrations of Tl (up to 55 mg·L⁻¹) and As (up to 213 mg·L⁻¹). Mild extractions (ammonium nitrate and phosphate) mobilized up to 54% of the total Tl and 12% of the total As, indicating that large amounts of Tl are weakly bound and could be easily mobilized into the surrounding ecosystems.

Financial support of the Austrian Science Fund (FWF) [P 30900-N28] is gratefully acknowledged.