Tracking sulfur behavior and *fO*₂ evolution in the 1257 CE Samalas magma reservoir (Indonesia)

S. DING^{1*}, M.-A. LONGPRÉ¹, R. ECONOMOS², A. FIEGE³, C.VIDAL⁴, I. PRATOMO⁵

¹CUNY Queens College, Flushing, NY, USA (*sding@qc.cuny.edu)
²Southern Methodist University, Dallas, TX, USA
³American Museum of Natural History, New York, NY, USA
⁴University of Cambridge, Cambridge, UK
⁵Geological Museum, Bandung, Indonesia

The 1257 CE Samalas eruption in Indonesia produced the largest stratospheric SO₂ release in the Common Era¹. Most (~80%) of these SO₂ emissions were likely derived from a pre-eruptive vapor phase¹. In this study, we present XANES measurements of S and Fe redox states in plagioclase-hosted melt inclusions and matrix glasses from the 1257 eruption to track the interplay between S behavior and fO_2 evolution at an unprecedented level of detail for an evolved magmatic system. The examined melt inclusions show decreasing S with decreasing Cl at relatively constant H₂O contents, consistent with extensive pre-eruptive degassing. The $S^{6+}/\Sigma S$ ratio in melt inclusions is negatively correlated with S content, with the low-S matrix glasses only containing S⁶⁺. In contrast, $Fe^{3+}/\Sigma Fe$ ratios in melt inclusions decrease with decreasing S, and matrix glasses show the lowest $Fe^{3+}/\Sigma Fe$ ratios. These findings differ significantly from observations in basaltic systems, where $S^{6+}/\Sigma S$ and $Fe^{3+}/\Sigma Fe$ ratios are both positively correlated with S contents². While degassing of S²⁻ as SO₂ could have increased $S^{6+}/\sum S$ ratio and reduced the Fe³⁺ to Fe²⁺ in the melt, decreasing FeO and TiO₂ concentrations along with the decreasing Fe³⁺/∑Fe suggest that crystallization also contributed to Fe reduction in the melt. The observed decoupling of Fe and S redox states at Samalas suggests that fO_2 might not be the only factor controlling S speciation in intermediate-to-silicic melts⁴. ¹Vidal et al., 2016, Sci. Reports; ²Brounce et al., 2017, PNAS; ³Jugo et al., 2011, GCA; ⁴Nash et al., 2019, EPSL.