Refining the paleosol-CO₂ proxy and the reconstruction of early-Pleistocene CO₂ levels

JIAWEI DA^{1*}, YI GE ZHANG², GEN LI³, XIANQIANG MENG^{1,4}, JUNFENG JI¹

¹Nanjing University, Nanjing 210000, China

(*correspondence: jiawei_da@smail.nju.edu.cn) ²Texas A&M University, College Station, TX 77843, USA ³California Institute of Technology, Pasadena, CA 91125,

USA

⁴Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210000, China

Finely disseminated calcites and MS-S(z) model

The paleosol-CO₂ proxy suffers from the largely unconstrained S(z) (soil-respired CO₂ concentration at depth z during the formation time of pedogenic carbonate). Here, based on both modern soil observations and paleosol analyses from the Chinese Loess Plateau (CLP), we propose two refinements to this method, which could significantly reduce the uncertainty of the paleosol-CO₂ estimates.

First, we target finely disseminated calcites (FDC) in bulk paleosols, which are mainly composed of nm-µm scale needle fiber calcites. Unlike calcite nodules traditionally used for pCO_2 reconstruction, the near-in-situ formation and the successive distribution of FDC provide the opportunity to build continous, high-resolution pCO_2 records.

Moreover, we identified a significant correlation between the degree of soil respiration and rainfall intensity based on modern soil observation data, which are further confirmed by the positive relatioship between paleosol-S(z) estimates and bulk soil magnetic susceptibility (MS)—a classic indicator of monsoonal rainfall. Through the application of a MS-S(z) model, we were able to provide specific S(z) estimate for each paleosol sample.

Early-Pleistocene pCO₂ reconstruction

Using these refinements and paleosols from the CLP, we reconstructed interglacial pCO_2 during 2.6-0.9 Ma. The results show overall low CO₂ levels similar to ice core records, indicating the Earth system has operated under low CO₂ levels for an extended period. Moreover, statistical analysis shows no apparent differences in pCO_2 before and after the mid-Pleistocene Transition (1.2-0.8 Ma), suggesting that CO₂ is unlikely the driver of this climate change event.