Chesapeake Bay acidification: relative impacts of long-term local and global stressors

FEI DA¹, MARJORIE A. M. FRIEDRICHS¹, PIERRE ST-LAURENT¹, ELIZABETH H. SHADWICK^{1,2}, AND RAYMOND NAJJAR³

¹ Virginia Institute of Marine Science, Gloucester Point, VA 23062 (*correspondence: <u>fda@vims.edu</u>)

² CSIRO, Battery Point TAS 7004, Australia

³ The Pennsylvania State University, State College, PA 16801

Multiple anthropogenic stressors have been impacting the Chesapeake Bay carbonate (CO2) system over the past several decades. These include global-scale increases in atmospheric temperature and CO₂ concentration, and local-scale changes in riverine nutrients and alkalinity. Because these stressors impact physical and biogeochemical processes, the Bay CO₂ system is likely to undergo complex long-term changes that are challenging to study via analysis of in-situ data alone. Historical pH data collected since 1996 showed surface pH has been decreasing with rates of up to -0.08 pH unit decade⁻¹ from May to September. Global increases in atmospheric CO₂ concentration are expected to decrease pH by -0.02 pH unit decade⁻¹; however, it is difficult to quantify the impacts of other stressors (e.g. changing nutrients) on pH trends. We examine and identify the primary drivers of this long-term trend in Chesapeake Bay CO₂ system using a 3D physicalbiogeochemical estuarine model. A reference simulation is conducted from 1985-1989. Sensitivity simulations conducted from 2015 to 2019 are used to study the global vs. local stressors that are responsible for the changes in CO₂ system over 30 years. Model results indicate that global increases in atmospheric CO₂ concentration and local reductions in nitrogen loading are two primary stressors causing similar long-term changes in Chesapeake Bay CO2 system. Increased atmospheric CO2 and temperature together reduced surface pH and aragonite saturation state (Ω) by 0.2 units and 0.4 over 30 years, respectively. Reduced riverine inorganic and organic nitrogen concentrations result in similar decreases in surface pH and Ω , indicating that nutrient management efforts in the Bay watershed may be exacerbating acidification in surface waters; however, nutrient reduction may improve bottom pH in the deep mainstem due to decreased respiration. In comparison, long-term increases in riverine alkalinity and dissolved inorganic carbon inputs, together, barely impact surface pH while increase surface Ω by 0.1. This work suggests that a complex combination of global and local anthropogenic stressors are responsible for observed longterm CO₂ system changes in estuarine systems.