Legacy arsenic contamination from historical gold mining on the floodplains of South Eastern Australia river

Francesco Colombi^{1*}, Ewen Silvester¹, Darren Baldwin², Aleicia Holland¹, Susan Lawerence³, Peter Davis³, Jodi Turnbull³, Ian Rutherford⁴, Mark Macklin⁵

 ¹ Centre for Freshwater Ecosystems, Department of Ecology, Environment & Evolution, La Trobe University, Albury-Wodonga, Australia (correspondence: 19574689@students.latrobe.edu.au)
² Rivers and Wetlands, Albury, Australia

³ Department of Archaeology and History, La Trobe

University, Melbourne, Australia

⁴ School of Geography, University of Melbourne,

Melbourne, Australia

⁵ Lincoln University, Lincoln, UK

Many river catchments in Victoria were intensively mined during the Gold Rush (1850 – 1930), leading to widescale deposition of mine tailings and changes in river and floodplain geomorphology [1]. The contaminant distribution in these tailings deposits were examined, with a particular focus on the upper and lower reaches of the Loddon River. The presence of an arsenic-rich 'plume' was identified in the tailing deposits overlying the original (i.e. pre-mining) floodplain surface.

Detected arsenic concentrations were higher than both the low level (20 ppm) and high level (70 ppm) interim sediment quality quidelines (ISQG) for Australian and New Zealand [2], indicating a potential hazard for the aquatic ecosystems.

Microprobe and XAS examination of both source ore body specimens and deposited tailings shows a strong shift from reduced arsenic (arsenopyrite) to arsenate, coprecipitated or adsorbed onto iron oxide phases, likely occuring during mineral processing and river transport.

As these As-contaminated sediments are upstream of major reservoirs and distributed widely across agricultural floodplains, the mobility of As was investigated using a sequential extraction procedure on targeted sediment profiles.

The work will assist in the future management and understanding of the environmental risk presented by these tailings.

[1] Davis et al. (2018) Anthropocene **21**, 1-15; [2] Simpson et al. (2013) CSIRO, 132.